221madou.ru

Мама и Я
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Арифметика как научиться быстро считать

Как освоить устный счёт школьникам и взрослым

Лайфхакер подобрал простые советы, сервисы и приложения.

Кроме отличных оценок по математике, умение считать в уме даёт массу преимуществ на протяжении всей жизни. Упражняясь в вычислениях без калькулятора, вы:

  • Держите мозг в тонусе. Для эффективной работы интеллект, как и мускулатура, нуждается в постоянных тренировках. Счёт в уме развивает память, логическое мышление и концентрацию, повышает способность к обучению, помогает быстрее ориентироваться в ситуации и принимать правильные решения.
  • Заботитесь о своём психическом здоровье. Исследования показывают Could mental math boost emotional health? , что при устном счёте задействованы участки мозга, ответственные за депрессию и тревожность. Чем активнее работают эти зоны, тем меньше риск неврозов и чёрной тоски.
  • Страхуетесь от проколов в бытовых ситуациях. Способность быстро посчитать сдачу, размер чаевых, количество калорий или проценты по кредиту защищает вас от незапланированных трат, лишнего веса и мошенников.

Освоить приёмы быстрого счёта можно в любом возрасте. Не беда, если сначала вы будете немного «тормозить». Ежедневно практикуйте основные арифметические операции по 10–15 минут и уже через пару месяцев достигнете заметных результатов.

Как научиться складывать в уме

Суммируем однозначные числа

Начните тренировку с элементарного уровня — сложения однозначных чисел с переходом через десяток. Эту технику осваивают в первом классе, но почему-то часто забывают с возрастом.

  • Предположим, вам нужно сложить 7 и 8.
  • Посчитайте, сколько семёрке не хватает до десяти: 10 − 7 = 3.
  • Разложите восьмёрку на сумму трёх и второй части: 8 = 3 + 5.
  • Добавьте вторую часть к десяти: 10 + 5 = 15.

Тот же приём «опоры на десятку» используйте при суммировании однозначных чисел с двузначными, трёхзначными и так далее. Оттачивайте простейшее сложение, пока не научитесь совершать одну операцию за пару секунд.

Суммируем многозначные числа

Основной принцип — разбить слагаемые числа на разряды (тысячи, сотни, десятки, единицы) и суммировать между собой одинаковые, начиная с самых крупных.

Допустим, вы прибавляете 1 574 к 689.

  • 1 574 раскладывается на четыре разряда: 1 000, 500, 70 и 4. 689 — на три: 600, 80 и 9.
  • Теперь суммируем: тысячи с тысячами (1 000 + 0 = 1 000), сотни с сотнями (500 + 600 = 1 100), десятки с десятками (70 + 80 = 150), единицы с единицами (4 + 9 = 13).
  • Группируем числа так, как нам удобно, и складываем то, что получилось: (1 000 + 1 100) + (150 + 13) = 2 100 + 163 = 2 263.

Основная сложность — удержать в голове все промежуточные результаты. Упражняясь в таком счёте, вы заодно тренируете память.

Как научиться вычитать в уме

Вычитаем однозначные числа

Снова возвращаемся в первый класс и оттачиваем навык вычитания однозначного числа с переходом через десяток.

Предположим, вы хотите отнять 8 от 35.

  • Представьте 35 в виде суммы 30 + 5.
  • Из 5 вычесть 8 нельзя, поэтому раскладываем 8 на сумму 5 + 3.
  • Вычтем 5 из 35 и получим 30. Затем отнимем от 30 оставшуюся тройку: 30 − 3 = 27.

Вычитаем многозначные числа

В отличие от сложения, при вычитании многозначных чисел на разряды нужно разбивать только то, которое вы отнимаете.

Например, вас просят отнять 347 от 932.

  • Число 347 состоит из трёх разрядных частей: 300 + 40 + 7.
  • Сначала вычитаем сотни: 932 − 300 = 632.
  • Переходим к десяткам: 632 − 40. Для удобства 40 можно представить в виде суммы 30 + 10. Сперва вычтем 30 и получим 632 − 30 = 602. Теперь отнимем от 602 оставшиеся 10 и получим 592.
  • Осталось разобраться с единицами, используя всё ту же «опору на десятку». Сперва вычитаем из 592 двойку: 592 − 2 = 590. А затем то, что осталось от семёрки: 7 − 2 = 5. Получаем: 590 − 5 = 585.

Как научиться умножать в уме

Лайфхакер уже писал о том, как быстро освоить таблицу умножения.

Добавим, что наибольшие трудности и у детей, и у взрослых вызывает умножение 7 на 8. Есть простое правило, которое поможет вам никогда не ошибаться в этом вопросе. Просто запомните: «пять, шесть, семь, восемь» — 56 = 7 × 8.

А теперь перейдём к более сложным случаям.

Умножаем однозначные числа на многозначные

По сути, здесь всё элементарно. Разбиваем многозначное число на разряды, перемножаем каждый на однозначное число и суммируем результаты.

Разберём на конкретном примере: 759 × 8.

  • Разбиваем 759 на разрядные части: 700, 50 и 9.
  • Умножаем каждый разряд по отдельности: 700 × 8 = 5 600, 50 × 8 = 400, 9 × 8 = 72.
  • Складываем результаты, разбивая их на разряды: 5 600 + 400 + 72 = 5 000 + (600 + 400) + 72 = 5 000 + 1 000 + 72 = 6 000 + 72 = 6 072.

Умножаем двузначные числа

Тут уже рука сама тянется к калькулятору или хотя бы к бумаге и ручке, чтобы воспользоваться старым добрым умножением в столбик. Хотя ничего сверхсложного в этой операции нет. Просто нужно немного потренировать краткосрочную память.

Попробуем умножить 47 на 32, разбив процесс на несколько шагов.

  • 47 × 32 — это то же, что и 47 × (30 + 2) или 47 × 30 + 47 × 2.
  • Сначала умножим 47 на 30. Проще некуда: 47 × 3 = 40 × 3 + 7 × 3 = 120 + 21 = 141. Приписываем справа нолик и получаем: 1 410.
  • Поехали дальше: 47 × 2 = 40 × 2 + 7 × 2 = 80 + 14 = 94.
  • Осталось сложить результаты: 1 410 + 94 = 1 500 + 4 = 1 504.

Этот принцип можно применять и к числам с большим количеством разрядов, но удержать в уме столько операций не каждому под силу.

Упрощаем умножение

Кроме общих правил, есть несколько лайфхаков, облегчающих умножение на определённые однозначные числа.

Умножение на 4

Можно умножить многозначное число на 2, а потом снова на 2.

Пример: 146 × 4 = (146 × 2) × 2 = (200 + 80 + 12) × 2 = 292 × 2 = 400 + 180 + 4 = 584.

Умножение на 5

Умножьте исходное число на 10, а потом разделите на 2.

Пример: 489 × 5 = 4 890 / 2 = 2 445.

Умножение на 9

Умножьте на 10, а затем отнимите от результата исходное число.

Пример: 573 × 9 = 5 730 − 573 = 5 730 − (500 + 70 + 3) = 5 230 − (30 + 40) − 3 = 5 200 − 40 − 3 = 5 160 − 3 = 5 157.

Умножение на 11

Приём сводится к следующему: впереди и сзади подставляем первую и последнюю цифры исходного числа. А между ними последовательно суммируем все цифры.

При умножении на двузначное число всё выглядит крайне просто.

Пример: 36 × 11 = 3(3+6)6 = 396.

Если сумма переходит через десяток, в центре остаётся разряд единиц, а к первой цифре добавляем один.

Пример: 37 × 11 = 3(3+7)7 = 3(10)7 = 407.

Чуть сложнее с умножением на более крупные числа.

Пример: 543 × 11 = 5(5+4)(4+3)3 = 5 973.

Как научиться делить в уме

Это операция, обратная умножению, поэтому и успех во многом зависит от знания всё той же школьной таблицы. Остальное — дело практики.

Делим на однозначное число

Для этого разбиваем исходное многозначное число на удобные части, которые точно будут делиться на наше однозначное.

Попробуем разделить 2 436 на 7.

  • Выделим из 2 436 наибольшую часть, которая нацело разделится на 7. В нашем случае это 2 100. Получаем (2 100 + 336) / 7.
  • Продолжаем в том же духе, только теперь с числом 336. Очевидно, что на 7 разделится 280. А в остатке будет 56.
  • Теперь делим каждую часть на 7: (2 100 + 280 + 56) / 7 = 300 + 40 + 8 = 348.

Делим на двузначное число

Это уже высший пилотаж, но мы всё равно попытаемся.
Предположим, вам надо поделить 1 128 на 24.

  • Прикидываем, сколько раз 24 может поместиться в 1 128. Очевидно, что 1 128 примерно в два раза меньше, чем 24 × 100 (2 400). Поэтому для «пристрелки» возьмём множитель 50: 24 × 50 = 1 200.
  • До 1 200 нашему делимому 1 128 не хватает 72. Сколько раз 24 поместится в 72? Правильно, 3. А значит, 1 128 = 24 × 50 − 24 × 3 = 24 × (50 − 3) = 24 × 47. Стало быть, 1128 / 24 = 47.
Читать еще:  Как научить ребенка говорить звук ш

Мы взяли не самый трудный пример, но пользуясь методом «пристрелки» и дроблением на удобные части, вы научитесь совершать и более сложные операции.

Что поможет освоить устный счёт

Для упражнений придётся ежедневно придумывать новые и новые примеры, только если вы сами этого хотите. В противном случае воспользуйтесь другими доступными способами.

Настольные игры

Играя в те, где необходимо постоянно вычислять в уме, вы не просто учитесь быстро считать. А совмещаете полезное с приятным времяпрепровождением в кругу семьи или друзей.

Карточные забавы вроде «Уно» и всевозможные варианты математического домино позволяют школьникам играючи освоить простое сложение, вычитание, умножение и деление. Более сложные экономические стратегии а-ля «Монополия» развивают финансовое чутьё и оттачивают сложные навыки счёта.

Что купить

  • «Уно»;
  • «7 на 9»;
  • «7 на 9 multi»;
  • «Трафик Джем»;
  • «Хекмек»;
  • «Математическое домино»;
  • «Умножариум»;
  • «Код фараона»;
  • «Суперфермер»;
  • «Монополия».

Мобильные приложения

С ними вы сможете довести устный счёт до автоматизма. Большинство из них предлагают решить примеры на сложение, вычитание, умножение и деление по программе младших классов. Но вы удивитесь, насколько это непросто. Особенно если задачи нужно щёлкать на время, без ручки и бумаги.

Математика: устный счёт, таблица умножения

Охватывает задания на устный счёт, которые соответствуют 1–6 классам школьной программы, включая и задачи на проценты. Позволяет тренировать скорость и качество счёта, а также настраивать сложность. Например, от простой таблицы умножения можно перейти к умножению и делению двузначных и трёхзначных чисел.

Ментальная арифметика: как научиться считать самому

Ментальная арифметика — это мгновенное совершение арифметических операций в уме. Сначала они выполняются с помощью японских счётов — соробана, на которых ученик впоследствии считает в воображении. Существует множество организаций, предлагающих обучить данной технике. Мы же разберёмся, можно ли изучить её самостоятельно.

Инструменты счёта

Начинается обучение ментальной арифметике со счёта на соробане — японском варианте счёт. Они представляют собой доску с вертикальными спицами и пятью нанизанными на них костяшками. Отличительная черта соробана — горизонтальная перегородка, которая отделяет четыре костяшки в столбцах от пятой.

Четыре нижние косточки японцы называют «земными», они означают единицы. Пятая, верхняя костяшка, «небесная», считается сразу за пять единиц.

Для обучения ментальной арифметике необходимо обзавестись именно соробаном, а не просто счётами. Учиться считать можно также на бумаге с помощью изображения соробана или использовать специализированные сайты и приложения, но такое выполнение вычислений будет менее наглядным.

Основы работы с числами

В начале занятий соробан нужно привести в нулевую позицию, косточки соробана не должны касаться разделителя: верхние необходимо поднять к рамке, а нижние — наоборот опустить.

Для совершения действий с соробаном традиционно используют большой и указательный пальцы: первый перемещает бусины из нижнего ряда к разделителю, второй — выполняет остальные манипуляции.

Первая спица справа — это единицы (от 1 до 9). Чтобы отложить цифры от 1 до 4 необходимо перемещать косточки под разделителем в правом крайнем столбце вверх, для обозначения цифры 5 опускаем 1 костяшку из верхнего правого ряда. Числа от 6 до 9 обозначаем как 5, то есть 1 опущенная костяшка из верхнего ряда, плюс от 1 до 4 костяшек, поднятых к разделителю из нижнего ряда: 6 — это 5+1, 7 — это 5+2.

Переходим к десяткам (числа от 1 до 99): они находятся на следующей спице.

Двигаясь на столбец влево, мы меняем разряд — от единиц переходим к десяткам, далее к сотням, тысячам, десяткам тысяч и так далее.

Например, чтобы набрать число 129 необходимо поднять 1 косточку снизу в столбце сотен, 2 костяшки на столбце десятков, и 5 — опустить одну косточку к разделителю сверху и поднять 4 снизу в столбце единиц.

Изучив способы обозначения чисел, переходим к практике. Один человек вслух называет числа, а другой набирает их на доске. После того как навык доведён до автоматизма, можно переходить к арифметическим действиям.

Занятия с ребёнком можно сделать интереснее, называя числа со значением: например, посчитать количество дней в неделе, году, набрать номер дома, квартиры, годы рождения родственников, количество материков, стран, человек, населяющих город и страну.

Простые сложение и вычитание

Главное правило счёта на соробане: «считать нужно слева направо», что не соответствует привычному нам способу вычисления.

Внимание: техники счёта могут отличаться, мы используем те, что встречаются в рекомендации японской организации The Abacus Committee.

Начинать вычисления стоит с чисел, сумма и разность которых даёт не более 9 при сложении и не менее 1 при вычитании.

Примеры вроде 1+6, 2+7, 12+24 или 123+432 подойдут на первых порах.

  • Начнём со сложения единиц: для примера 1+2 поднимите на крайней правой спице 1 костяшку вверх, а затем добавьте к ней ещё 2.
  • Для примера:12+32. Откладываем в колонке десятков — 1 косточку, в единицах — 2. Затем к 1 костяшке придвигаем 3, к 2 костяшкам единиц ещё 2.

Изучать вычитание также стоит с простых примеров:

  • Рассмотрим вычитание на единицах. Простой пример: 4 — 2 = 2. Из четырёх поднятых костяшек убираем 2 и получаем результат.
  • Простой пример с десятками: 24 — 13 = 11. Из столбца десятков убираем 1 костяшку остаётся 1. Переходим к единицам: от 4 костяшек отнимаем 3, у нас остаётся 1 костяшка. Результат готов.
  • По тому же принципу работаем с сотнями: 432 — 322 = 110. Из столбца сотен от 4 отнимем 3, из 3 вычтем 2 останется 1, из 2 вычтем 2 — все костяшки из столбца единиц возвращаются в нулевую позицию.

Для более сложных вычислений необходимо познакомиться с принципом дополнительных чисел.

Дополнительные числа

Высокая скорость работы на соробане зависит от того, насколько механизированы действия считающего. Смысл заключается в том, чтобы снять лишнюю нагрузку с ума и выполнять арифметические действия механически, без размышлений или колебаний, отсюда и сравнение людей, обладающих этим навыком, с калькулятором. И если со сложением и вычитанием простых чисел всё ясно, то с более сложными примерами нужно освоить концепцию дополнительных чисел. Нужно просто запомнить, что:

  • цифру 5 можно разложить на дополнительные числа: 4 и 1, 5 и 2.
  • цифру 10 можно разложить на дополнительные числа: 9 и 1, 8 и 2, 7 и 3, 6 и 4, 5 и 5.

При сложении дополнительное число вычитается. При вычитании — дополнительное число прибавляется. Как это работает на практике рассмотрим далее.

Сложное сложение

Пример: 4 + 8 = 12

  1. Установите 4 костяшки в столбце единиц.
  2. Для 8 костяшек места уже не найдётся.
  3. Вспоминаем принцип дополнительных чисел: число 10 даёт наша 8 и цифра 2.
  4. Вычтите дополнительную цифру 2 из 4.
  5. Добавьте единицу в столбик десятков.
  6. Результат — 12.

Принцип вычисления на соробане в привычной записи можно представить так:

4 + 8 = 12 превращаем в 4 — 2 +10 = 12

Важно запомнить: в сложных заданиях на сложение всегда вычитайте дополнительное число.

Сложное вычитание

Пример: 12 — 7 = 5.

  1. Установите 1 костяшку на столбец с десятками, добавьте 2 к единицам.
  2. Вспомните, что 7 — это 10 и 3.
  3. Уберите 1 костяшку из столбца десятков.
  4. Прибавьте в столбце единиц к 2 костяшкам дополнительные 3. Получается 5 — верните в нулевую позицию нижние костяшки и опустите «небесную».

Принцип вычисления на соробане в привычной записи можно представить так:

12 — 7 = 5 мы превращаем в 12 — 10 + 3 = 5

Важно запомнить: в подобных вычислениях на вычитание всегда прибавляйте дополнительное число.

Порядок столбцов при счёте

В приведённых выше примерах мы использовали по 2 столбца — для десятков и единиц. Особое внимание стоит уделить тому, в каком порядке стоит добавлять и убирать костяшки из столбцов.

  1. Вычтите дополнительное число и соответственное количество костяшек из правого столбца.
  2. Затем добавьте костяшку в левый стержень.
  1. Сначала вычтите числа в левом столбце.
  2. Добавьте дополнительное число на правый стержень.

Умножение

Есть несколько возможных способов умножения на соробане, мы рассмотрим один из самых распространённых.

Обратите внимание : чтобы умножать на соробане, нужно хорошо знать таблицу умножения.

Также необходимо запомнить следующие термины, которые мы рассмотрим на примере a x b = c, где:

Читать еще:  Как научиться хорошо выговаривать букву р

a — это множимое;

b — это множитель;

Пример : 43 x 8 = 344.

В первом столбце слева устанавливаем множитель — 8, отступаем один столбец и откладываем множимое — 43. Отступаем 2 столбца — с этого столбца начнём записывать результат.

Умножаем 3 на 8. Результат 24 записываем в 7 и 8 столбцах. Завершая операцию, убираем цифру 3 с доски, сдвинув костяшки вверх.

Умножьте 4 на 8. Результат 32 запишите следующим образом: 3 в 6 столбец — перед прошлым результатом, а 2 сложите с результатом в 7 столбце, то есть с 2. Три цифры в результате дают ответ — 344.

Сложнее выполнить умножение с двумя двузначными числами, рассмотрим это на следующем примере:

Откладываем множитель, то есть 18 с начала доски. Делаем отступ и откладываем 35.

Умножаем 1 на 5, записываем результат через 2 пробела.

Умножаем 8 на 5, получаем 40. 4 записываем под прошлым результатом, т.е. складываем с 5. В столбцах результата остаётся цифра 90.

Умножаем 3 на 1 и записываем результат — 3 — перед предыдущими столбцами. Получается 390.

Умножаем 3 на 8, результат 24 записываем под первыми двумя цифрами прошлого результата. Получаем 630.

Деление

Для деления мы также используем стандартные математические термины a ÷ b = c, где:

Делимое набирается на спицах в правом конце соробана, делитель — в левом конце. Результат записывается посередине.

Между делимым и делителем рекомендуют оставить минимум 4 пустых столбца для записи результата.

Также существуют правила размещения первой цифры частного:

  • Если количество цифр в делителе меньше (или равно) количеству цифр в делимом, расположите первую цифру частного, отступив 2 столбца слева от делимого.
  • Если количество цифр в делителе больше, нежели в делимом, начните располагать частное, отступив 1 столбец слева от делимого.
  1. Помещаем делитель 2 в левую часть счёт, делимое — 72 — в правую.
  2. Делим первое число 7 на 2. Цифра 2 помещается в 7 полностью три раза — поднимаем 3 костяшки в соответствии с правилом №1, отступив 2 столбца влево от делимого.
  3. Умножим полученное число 3 на делитель — 2. Результат — 6 — вычтем из первой цифры делимого — 7. Убираем лишние костяшки, остаётся единица.
  4. Остаток от делимого — 12 делим на делитель — 2. Полученный результат — 6 помещаем в следующий свободный столбец для записи результата. Получаем в итоге — 36.

Полезные ресурсы

  • Подвигать косточки на соробане: ссылка
  • Посмотреть пошаговое решение примеров: ссылка
  • Приложение «Игры соробан»: ссылка

Мы разобрали самые простые способы вычисления на соробане. Чтобы выполнять манипуляции с трёхзначными и дробными числами необходимо на высоком уровне научиться работать с однозначными и двузначными числами.

Следующей ступенью после тщательного освоения каждой техники счёта становится его представление соробана в уме и мысленное выполнение вычислений. Последовательно, правильно и адаптировано для каждого возраста учат считать подготовленные тренеры в специализированных центрах. Подобрать такой в своём городе вы можете на TeachMePlease.

Как научить ребенка считать в уме

Учимся считать быстро: ментальная арифметика – дома

Почти все слышали о курсах ментальной арифметики для детей, но многие даже не пытались выяснить, о чем, собственно, речь — все равно водить ребенка на специальные занятия нет возможности. Однако мнение, что освоить ментальную арифметику можно, только занимаясь очно, недавно пошатнула книга, разработанная для самостоятельных занятий родителей с детьми. Итак, чем же ментальная арифметика может быть полезна для ребенка и с чего начать?

Наверняка вы видели в новостях, как группа детишек с умопомрачительной скоростью складывает и вычитает пятизначные числа. Думаете, все они вундеркинды? Вовсе нет, просто они освоили ментальную арифметику.

Ментальная арифметика — это быстрый устный счет в уме, при котором у человека задействованы одновременно два полушария головного мозга, а не только левое, как при традиционных вычислениях. В более общем понимании эта оригинальная система развития интеллекта формирует умственные и творческие способности ребенка, помогает ему лучше учиться в школе, повышает уверенность в себе.

Зачем развивать оба полушария мозга

Вам, наверное, встречалась такая статистика: только 5% людей достигают значительных успехов в жизни. Остальные 95% лишь мечтают об этом, но их мечты почему-то не сбываются. Возможность добиваться хороших результатов в различных сферах жизни напрямую связана с гармоничным развитием мозга человека — это подтверждают исследования ученых.

К сожалению, у большей части населения земли левое полушарие развито лучше, чем правое. Иными словами, у них хорошо развито логическое мышление. А вот творческое мышление — интуиция, выбор правильных путей и поступков — работает из рук вон плохо.

Форма двух полушарий похожа, но функции у них разные. Левое имеет тесные связи с работой языка, абстрактного и логического мышления. Правое имеет дело с объектом мышления: изображение, формы, творчество и интуиция. В идеале надо одинаково использовать оба полушария, однако современная система образования почти во всех странах уделяет основное внимание развитию левого полушария. И наши дети в школах усердно занимаются точными науками и развивают логическое мышление.

Развитие правого полушария отдано на откуп родителям, и каждый сам для себя решает, сколько времени будет отведено для творчества, фантазирования, мечтаний, креативности и нестандартного мышления.

При чем здесь творчество?

Методика изучения арифметики, получившая название «Ментальная арифметика», — это программа развития умственных способностей и творческого потенциала с помощью математических вычислений. Умный человек — это думающий человек. Что такое думать? Думать — это направлять свои мысли на конкретные объекты или образы и представлять различные сценарии событий. Это позволяет человеку предугадывать, что произойдет с ним в том или ином случае, и избегать нежелательных ситуаций. Если вы заранее все продумали и уверены, что ваши намерения принесут только выгоду и не скрывают никаких подводных камней, можно смело браться за дело!

Воображение — это способность человека к построению в сознании образов, представлений, идей или объектов и манипуляции ими. Это играет ключевую роль в следующих психических процессах: моделирование, планирование, творчество, игра, память. В широком смысле всякий процесс, протекающий в образах, является воображением. Оно является основой наглядно-образного мышления и позволяет человеку ориентироваться в ситуации и решать задачи, не совершая практических действий.

Главное преимущество ментальной арифметики в том, что дети не просто заучивают определенные числа и примеры, а запоминают цифры в виде картинок. Это не только помогает ребенку считать, как гениальный математик, но и развивает его память и образное мышление.

Что нужно для того, чтобы начать осваивать ментальную арифметику?

Чтобы овладеть этой чудо-наукой, не нужны новомодные гаджеты. Вам понадобятся только. счеты. Но не советский предок калькулятора, а специальные китайские счеты, или абакус. Купить его несложно через интернет. С помощью этого нехитрого инструмента можно выполнять основные арифметические действия: сложение, вычитание, умножение и деление.

Костяшки современного абакуса имеют заостренную форму. Для манипуляций используются только два пальца: указательный и большой, но при этом задействуются обе руки (это отлично тренирует мелкую моторику). Дети быстро осваивают ручной счет и затем переходят от реального абакуса к воображаемому.

Занимайтесь с ребенком не более одного часа в день, не нужно переутомлять его. Успех обучения во многом зависит от правильного подхода и настроя.

Как быстро считать в уме: приемы устного счета больших чисел

Доверь свою работу кандидату наук!

Образец

Устный счет – занятие, которым в наше время себя утруждает все меньшее количество людей. Гораздо проще достать калькулятор на телефоне и вычислить любой пример.

Но так ли это на самом деле? В этой статье мы представим математические лайфхаки, которые помогут научиться быстро складывать, вычитать, умножать и делить числа в уме. Причем оперируя не единицами и десятками, а минимум двухзначными и трехзначными числами.

После освоения методов из этой статьи идея лезть в телефон за калькулятором уже не покажется такой хорошей. Ведь можно не тратить время и посчитать все в уме гораздо быстрее, а заодно размять мозги и произвести впечатление на окружающих (противоположного пола).

Читать еще:  Как быстро научиться считать устно

Итак, добро пожаловать в увлекательный мир вычислений! Мы собрали советы от наших авторов о том, как улучшить устный счет и стать математическим героем и гением. Кстати, если вам интересна математика, вы можете почитать статью «Пределы для чайников» в нашем блоге.

Предупреждаем! Если вы обычный человек, а не вундеркинд, то для развития навыка счета в уме понадобятся тренировки и практика, концентрация внимания и терпение. Сначала все может получаться медленно, но потом дело пойдет на лад, и вы сможете быстро считать в уме любые числа.

Гаусс и устный счет

Карл Фридрих Гаусс

Одним из математиков с феноменальной скоростью устного счета был знаменитый Карл Фридрих Гаусс (1777-1855). Да-да, тот самый Гаусс, который придумал нормальное распределение.

По его собственным словам, он научился считать раньше, чем говорить. Когда Гауссу было 3 года, мальчик взглянул на платежную ведомость своего отца и заявил: «Подсчеты неверны». После того как взрослые все перепроверили, выяснилось, что маленький Гаусс был прав.

В дальнейшем этот математик достиг немалых высот, а его труды до сих пор активно используются в теоретических и прикладных науках. До самой смерти большую часть вычислений Гаусс производил в уме.

Здесь мы не будем заниматься сложными расчетами, а начнем с самого простого.

Сложение чисел в уме

Чтобы научиться складывать в уме большие числа, нужно уметь безошибочно складывать числа до 10. В конечном счете любая сложная задача сводится к выполнению нескольких тривиальных действий.

Чаще всего проблемы и ошибки возникают при сложении чисел с «переходом через 10». При сложении (да и при вычитании) удобно применять технику «опоры на десяток». Что это? Сначала мы мысленно спрашиваем себя, сколько одному из слагаемых не хватает до 10, а потом прибавляем к 10 оставшуюся до второго слагаемого разность.

Например, сложим числа 8 и 6. Чтобы из 8 получить 10, не хватает 2. Затем к 10 останется прибавить 4=6-2. В итоге получаем: 8+6=(8+2)+4=10+4=14

Основная хитрость со сложением больших чисел – разбить их на разрядные части, а потом сложить эти части между собой.

Пусть нам нужно сложить два числа: 356 и 728. Число 356 можно представить как 300+50+6. Аналогично, 728 будет иметь вид 700+20+8. Теперь складываем:

356+728=(300+700)+(50+20)+(8+6)=1000+70+14=1084

Вычитание чисел в уме

Вычитание чисел тоже будет даваться легко. Но в отличие от сложения, где каждое число разбивается на разрядные части, при вычитании «разбить» нужно только то число, которое мы отнимаем.

Например, сколько будет 528-321? Разбиваем число 321 на разрядные части и получаем: 321=300+20+1.

Теперь считаем: 528-300-20-1=228-20-1=208-1=207

Попробуйте визуализировать процессы сложения и вычитания. В школе всех учили считать в столбик, то есть сверху вниз. Один из способов перестроить мышление и ускорить счет – считать не сверху вниз, а слева направо, разбивая числа на разрядные части.

Умножение чисел в уме

Умножение – это многократное повторение числа. Если нужно умножить 8 на 4, это значит, что число 8 нужно повторить 4 раза.

Так как все сложные задачи сводятся к более простым, нужно уметь умножать все однозначные числа. Для этого существует отличный инструмент – таблица умножения. Если вы не знаете эту таблицу на зубок, то мы настоятельно рекомендуем первым делом выучить ее и только потом приниматься за практику устного счета. К тому же учить там, по сути, нечего.

Таблица умножения

Умножение многозначных чисел на однозначные

Сначала потренируйтесь в умножении многозначных чисел на однозначные. Пусть нужно умножить 528 на 6. Разбиваем число 528 на разряды и идем от старшего к младшему. Сначала умножаем, а потом складываем результаты.

528=500+20+8

528*6=500*6+20*6+8*6=3000+120+48=3168

Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы

Умножение двузначных чисел

Здесь тоже нет ничего сложного, только нагрузка на краткосрочную память немного больше.

Перемножим 28 и 32. Для этого сведем всю операцию к умножению на однозначные числа. Представим 32 как 30+2

28*32=28*30+28*2=20*30+8*30+20*2+8*2=600+240+40+16=896

Еще один пример. Умножим 79 на 57. Это значит, что на нужно взять число «79» 57 раз. Разобьем всю операцию на этапы. Сначала умножим 79 на 50, а потом – 79 на 7.

  • 79*50=(70+9)*50=3500+450=3950
  • 79*7=(70+9)*7=490+63=553
  • 3950+553=4503

Умножение на 11

Вот хитрый прием быстрого устного счета, который поможет умножить любое двузначное число на 11 с феноменальной скоростью.

Чтобы умножить двузначное число на 11, две цифры числа складываем друг с другом, и получившуюся сумму вписываем между цифрами исходного числа. Получившееся в итоге трехзначное число — результат умножения исходного числа на 11.

Проверим и умножим 54 на 11.

Возьмите любое двузначное число, умножьте его на 11 и убедитесь сами — эта хитрость работает!

Возведение в квадрат

С помощью другого интересного приема устного счета можно легко и быстро возводить двузначные числа в квадрат. Особенно просто это делать с числами, которые заканчиваются на 5.

Результат начинается с произведения первой цифры числа на следующую за ней по иерархии. То есть, если эту цифру обозначить через n, то следующей за ней по иерархии цифрой будет n+1. Результат заканчивается на квадрат последней цифры, то есть квадрат 5.

Проверим! Возведем в квадрат число 75.

Раньше все считали без калькуляторов

Деление чисел в уме

Осталось разобраться с делением. По сути, это операция, обратная умножению. С делением чисел до 100 никаких проблем вообще возникать не должно – ведь есть таблица умножения, которую вы знаете на зубок.

Деление на однозначное число

При делении многозначных чисел на однозначное необходимо выделить максимально большую часть, которую можно разделить с помощью таблицы умножения.

Например, есть число 6144, которое нужно разделить на 8. Вспоминаем таблицу умножения и понимаем, что на 8 будет делиться число 5600. Представим пример в виде:

6144:8=(5600+544):8=700+544:8

Далее из числа 544 также выделяем максимально большое число, которое делится на 8. Имеем:

544:8=(480+64):8=60+64:8

Осталось разделить 64 на 8 и получить результат, сложив все результаты деления

6144:8=700+60+8=768

Деление на двузначное число

При делении на двузначное число нужно пользоваться правилом последней цифры результата при умножении двух чисел.

При умножении двух многозначных чисел последняя цифра результата умножения всегда совпадает с последней цифрой результата умножения последних цифр этих чисел.

Например, умножим 1325 на 656. По правилу, последняя цифра в получившемся числе будет , так как 5*6=30. Действительно, 1325*656=869200.

Теперь, вооружившись этой ценной информацией, рассмотрим деление на двузначное число.

Сколько будет 4424:56?

Первоначально будем пользоваться методом «подгона» и найдем пределы, в которых лежит результат. Нам нужно найти число, которое при умножении на 56 даст 4424. Интуитивно попробуем число 80.

56*80=4480

Значит, искомое число меньше 80 и явно больше 70. Определим его последнюю цифру. Ее произведение на 6 должно заканчиваться цифрой 4. Согласно таблице умножения, нам подходят результаты 4 и 9. Логично предположить, что результатом деления может быть либо число 74, либо 79. Проверяем:

79*56=4424

Готово, решение найдено! Если бы не подошло число 79, второй вариант обязательно оказался бы верным.

Картина Н.П. Богданова-Бельского «Устный счёт. В народной школе С. А. Рачинского»

Полезные советы

В заключение приведем несколько полезных советов, которые помогут быстро научиться устному счету:

  • Не забывайте тренироваться каждый день;
  • не бросайте тренировки, если результат не приходит так быстро, как хотелось бы;
  • скачайте мобильное приложение для устного счета: так вам не придется самостоятельно придумывать себе примеры;
  • почитайте книги по методикам быстрого устного счета. Существуют разные техники устного счета, и вы сможете овладеть той, которая лучше всего подходит именно вам.

Польза устного счета неоспорима. Тренируйтесь, и с каждым днем вы будете считать все быстрее и быстрее. А если вам понадобится помощь в решении более сложных и многоуровневых задач, обращайтесь к специалистам студенческого сервиса за быстрой и квалифицированной помощью!

Ссылка на основную публикацию
Adblock
detector