221madou.ru

Мама и Я
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Как быстро научится считать примеры

Игры, задания и упражнения, с которыми вы быстро научите ребёнка считать в уме

Когда обучение счёту начинается с классических примеров, ребёнок решает, что считать и заниматься математикой скучно. Попробуйте лучше занимательные игры и задания от ЛогикЛайк. Полезные идеи для детей 3-5 и 6-8 лет.

На LogicLike.com дети развивают логику и способности к математике. Решайте ребусы, закономерности, логические задачи и головоломки. У нас более 3500 занимательных заданий.

Первое знакомство с цифрами и игры с ними

Наверняка вы уже перешагнули эту ступеньку и успели использовать самые разные способы, чтобы запомнить цифры: рисовали, вырезали, лепили и т.д. В возрасте 3-5 лет дети на лету схватывают всё, что интересно, поэтому их несложно вовлекать в обучающие игры.

Давайте рассмотрим пару необычных приёмов для обучения счёту, которые одинаково полезны не только младшим и средним, но и старшим дошкольникам.

«Язык чисел» и математические задачки из воздуха

Мы, взрослые, каждый день думаем числами, но не всегда называем их вслух. А ведь детей может заинтересовать именно «язык чисел»: «Во сколько мы сегодня проснулись? В 7 утра. А какой автобус ждали на остановке? 12-й. Сколько минут ехали? 10».

Постепенно просто называть числа станет скучно. Покажите ребёнку, как интересно считать всё, что его окружает: подъезды в доме, машины на парковке, деревья возле детской площадки, номера домов. Если вы находчивый родитель, то сможете на ходу придумать небольшие математические задачки на сложение и вычитание.

Замечено: с бо́льшим энтузиазмом ребёнок пересчитает то, что ему нравится. Поэтому всем известные задачи с конфетами действуют, как магнит.

Дома ребёнку всегда есть, что посчитать. Можно следить за стрелками часов, превратить в игру измерение веса и роста. Надолго занимает детей отрывной календарь или календарь-игрушка, в котором нужно каждый день переворачивать кубики с цифрами.

А вот этот Lego-календарь и вовсе нужно каждый месяц разбирать и собирать заново.

Для детей старшего дошкольного возраста все перечисленные выше упражнения можно усложнить. Попробуйте вместе составлять текстовые задачи, опираясь на увиденное за день. Пусть ребёнок больше считает в уме, решая прикладные задачи.

А вообще, чтобы придумать интересные задачи самостоятельно или найти качественный материал в интернете, потребуется время. Команда ЛогикЛайк уже провела всю методическую и другую подготовительную работу за вас!

2500+ заданий на развитие логики и математических способностей. Озвучка заданий, ответы и пояснения в вашем онлайн-кабинете.

Простые игры с числами помогут познакомить ребёнка с арифметическими действиями

Кубики, магниты, карточки, счётные палочки — самые что ни на есть стандартные материалы для обучения счёту. Но они быстро наскучат ребёнку. Гораздо интереснее ему будет играть с тем, что он сделает своими руками. Можно пофантазировать вместе с ребёнком и смастерить собственные игры для изучения чисел и отработки простейших математических действий.

Интересное применение найдётся ракушкам, привезенным с моря. Такая игра поможет младшим дошкольникам быстрее научиться складывать и вычитать. Теперь абстрактные арифметические действия можно видеть на наглядном примере.

Лоток из-под яиц и капсулы от киндеров тоже не спешите выбрасывать, их можно превратить в нескучную игру. На фото вариант со сложением, но его можно заменить на вычитание, умножение или деление. Игра хороша тем, что ребёнок может руками «разбирать» и «собирать» новые примеры.

Конструкторы типа Lego тоже подходят для изучения счёта. Подобные игры помогают развивать мелкую моторику, логику и пространственное мышление.

Устный счет: техника быстрого счета в уме

Зачем считать в уме, если решить любую арифметическую задачу можно на калькуляторе. Современная медицина и психология доказывают, что устный счет — это тренаж для серых клеточек. Выполнять такую гимнастику необходимо для развития памяти и математических способностей.

Известно множество приёмов для упрощения вычислений в уме. Все, кто видел знаменитую картину Богданова-Бельского «Устный счёт», всегда удивляются — как крестьянские дети решают такую непростую задачу, как деление суммы из пяти чисел, которые предварительно ещё надо возвести в квадрат?

Оказывается, эти дети — ученики известного педагога-математика Сергея Александровича Рачицкого (он также изображен на картине). Это не вундеркинды — ученики начальных классов деревенской школы XIX века. Но все они уже знают приёмы упрощения арифметических расчетов и выучили таблицу умножения! Поэтому решить такую задачку этим детишкам вполне под силу!

Секреты устного счёта

Существуют приемы устного счета простые алгоритмы, которые желательно довести до автоматизма. После овладения простыми приёмами можно переходить к освоению более сложных.

Прибавляем числа 7,8,9

Для упрощения вычислений числа 7,8,9 сначала надо округлять до 10, а затем вычитать прибавку. К примеру, чтобы прибавить 9 к двузначному числу, надо сначала прибавить 10, а затем вычесть 1 и т.д.

Быстро складываем двузначные числа

Если последняя цифра двузначного числа больше пяти, округляем его в сторону увеличения. Выполняем сложение, из полученной суммы отнимаем «добавку».

Если последняя цифра двузначного числа меньше пяти, то складываем по разрядам: сначала прибавляем десятки, затем — единицы.

Если слагаемые поменять местами, то сначала можно округлить число 57 до 60, а потом вычесть из общей суммы 3:

Складываем в уме трехзначные числа

Быстрый счет и сложение трехзначных чисел — это возможно? Да. Для этого надо разобрать трехзначные числа на сотни, десятки, единицы и поочередно их приплюсовать.

Особенности вычитания: приведение к круглым числам

Вычитаемые округляем до 10, до 100. Если надо вычесть двузначное число, надо округлить его до 100, вычесть, а затем к остатку прибавить поправку. Это актуально если поправка невелика.

Вычитаем в уме трехзначные числа

Если в свое время был хорошо усвоен состав чисел от 1 до 10, то вычитание можно производить по частям и в указанном порядке: сотни, десятки, единицы.

Умножить и разделить

Моментально умножать и делить в уме? Это возможно, но без знания таблицы умножения не обойтись. Таблица умножения — это золотой ключик к быстрому счету в уме! Она применяется и при умножении, и при делении. Вспомним, что в начальных классах деревенской школы в дореволюционной Смоленской губернии (картина «Устный счет») дети знали продолжение таблицы умножения — с 11 до 19!

Хотя на мой взгляд достаточно знать таблицу от 1 до 10, чтобы мочь перемножать бо´льшие числа. Например:

Умножаем и делим на 4, 6, 8, 9

Овладев таблицей умножения на 2 и на 3 до автоматизма, сделать остальные расчеты будет проще простого.

Для умножения и деления двух- и трехзначных чисел применяем простые приёмы:

умножить на 4 — это дважды умножить на 2;

умножить на 6 — это значит умножить на 2, а потом на 3;

умножить на 8 — это трижды умножить на 2;

умножить на 9 — это дважды умножить на 3.

разделить на 4 — это дважды разделить на 2;

разделить на 6 — это сначала разделить на 2, а потом на 3;

разделить на 8 — это трижды разделить на 2;

разделить на 9 — это дважды разделить на 3.

Как умножать и делить на 5

Число 5 — это половина от 10 (10:2). Поэтому сначала умножаем на 10, затем полученное делим пополам.

Еще проще правило деления на 5. Сначала умножаем на 2, а затем полученное делим на 10.

Умножение на 9

Чтобы умножить число на 9, необязательно его дважды умножать на 3. Достаточно его умножить на 10 и вычесть из полученного умножаемое число. Сравним, что быстрее:

Также давно замечены частные закономерности, которые значительно упрощают умножение двузначных чисел на 11 или на 101. Так, при умножении на 11, двузначное число как бы раздвигается. Составляющие его цифры остаются по краям, а в центре оказывается их сумма. Например: 24*11=264. При умножении на 101, достаточно приписать к двузначному числу такое же. 24*101= 2424. Простота и логичность таких примеров вызывает восхищение. Встречаются такие задачи очень редко — это примеры занимательные, так называемые маленькие хитрости.

Счет на пальцах

Сегодня еще можно встретить много защитников «пальчиковой гимнастики» и методики устного счета на пальцах. Нас убеждают, что учиться складывать и отнимать, загибая и разгибая пальцы — это очень наглядно и удобно. Диапазон таких вычислений очень ограничен. Как только расчеты выходят за рамки одной операции возникают трудности: надо осваивать следующий прием. Да и загибать пальцы в эпоху айфонов как-то несолидно.

Читать еще:  Как научить ребенка говорить шипящие звуки

Например, в защиту «пальчиковой» методики приводится приём умножения на 9. Хитрость приёма такова:

  • Чтобы умножить любое число в пределах первой десятки на 9, надо развернуть ладони к себе.
  • Отсчитывая слева направо, загнуть палец, соответствующий умножаемому числу. К примеру, чтобы умножить 5 на 9, надо загнуть мизинец на левой руке.
  • Оставшееся количество пальцев слева будет соответствовать десяткам, справа — единицам. В нашем примере — 4 пальца слева и 5 справа. Ответ: 45.

Да, действительно, решение быстрое и наглядное! Но это — из области фокусов. Правило действует только при умножении на 9. А не проще ли, для умножения 5 на 9 выучить таблицу умножения? Этот фокус забудется, а хорошо выученная таблица умножения останется навсегда.

Также существует еще множество подобных приемов с применением пальцев для каких-то единичных математических операций, но это актуально пока вы этим пользуетесь и тут же забывается при прекращении применения. Поэтому лучше выучить стандартные алгоритмы, которые останутся на всю жизнь.

Устный счёт на автомате

Во-первых, необходимо хорошо знать состав числа и таблицу умножения.

Во-вторых, надо запомнить приемы упрощения расчётов. Как выяснилось, таких математических алгоритмов не так уж много.

В-третьих, чтобы приём превратился в удобный навык, надо постоянно проводить краткие «мозговые штурмы» — упражняться в устных вычислениях, используя тот или иной алгоритм.

Тренировки должны быть короткими: решить в уме по 3-4 примера, используя один и тот же приём, затем переходить к следующему. Надо стремиться использовать любую свободную минутку — и полезно, и нескучно. Благодаря простым тренировкам все вычисления со временем будут совершаться молниеносно и без ошибок. Это очень пригодится в жизни и выручит в непростых ситуациях.

Удивительно легкий способ обучения ребенка устному счету

Как научить ребенка устному счету

Сергей Поляков автор методики раннего обучения детей

Почему я называю свой способ легким и даже удивительно легким? Да просто потому, что более простого и надежного способа обучения малышей счету я пока не встречал. Вы сами в этом скоро убедитесь, если воспользуетесь им для обучения своего ребенка. Для ребенка это будет просто игрой, а все, что потребуется от родителей — это уделять этой игре по несколько минут в день, и если будете придерживаться моих рекомендаций, то раньше или позже ваш ребенок обязательно начнет считать наперегонки с вами. Но возможно ли такое, если ребенку всего три или четыре года? Оказывается, вполне возможно. Во всяком случае, я успешно делаю это более десяти лет.

Весь процесс обучения я излагаю далее очень подробно, с детальным описанием каждой обучающей игры, для того чтобы его смогла повторить со своим ребенком любая мама. А, кроме того, в Интернете на моем сайте «Семь ступенек к книжке» я разместил видеозаписи фрагментов моих занятий с детьми, чтобы сделать эти уроки еще более доступными для воспроизведения.

Сначала несколько вступительных слов.

Первый вопрос, который возникает у некоторых родителей: а стоит ли начинать учить ребенка счету до школы?

Я считаю, что обучать ребенка нужно тогда, когда он проявляет интерес к предмету обучения, а не после того, как этот интерес у него угас. А интерес к счету и подсчитыванию проявляется у детей рано, его надо лишь слегка подпитывать и незаметно день ото дня усложнять игры. Если же ваш ребенок почему-то безразличен к пересчитыванию предметов, не говорите себе: «У него нет склонности к математике, я тоже в школе по математике отставала». Постарайтесь пробудить в нем этот интерес. Просто включите в его развивающие игры то, что вы до сих пор упускали: пересчитывание игрушек, пуговичек на рубашке, ступенек при ходьбе и т.п.

Второй вопрос: каким способом лучше обучать ребенка?

Ответ на этот вопрос вы получите, прочитав здесь полное изложение моей методики обучения устному счету.

А пока хочу предостеречь вас от применения некоторых способов обучения, не приносящих ребенку пользу.

Не учите ребенка складывать и вычитать по единице:

«Чтобы к прибавить 3, нужно сначала к прибавить 1, получится 3, потом к прибавить еще 1, получится 4, и, наконец, к прибавить еще 1, в результате будет 5»; «- Чтобы от отнять 3, нужно сначала отнять 1, останется 4, потом от отнять еще 1, останется 3, и, наконец, от отнять еще 1, в результате останется 2».

Этот, к сожалению, распространенный способ вырабатывает и закрепляет привычку к медленному подсчитыванию и не стимулирует умственное развитие ребенка. Ведь считать — значит складывать и отнимать сразу целыми числовыми группами, а не добавлять и убавлять по единичке, да еще и с помощью пересчитывания пальчиков или палочек. Почему же этот не полезный для ребенка способ так распространен? Думаю, потому что так проще учителю. Надеюсь, что некоторые учителя, ознакомившись с моей методикой, откажутся от него.

Не начинайте учить ребенка считать с помощью палочек или пальцев и следите, чтобы он не начал пользоваться ими позже по совету старшей сестрички или братика. Научить считать на пальцах легко, а отучить трудно. Пока ребенок считает по пальцам, механизм памяти не задействован, в памяти не откладываются результаты сложения и вычитания целыми числовыми группами.

И, наконец, ни в коем случае не используйте появившийся в последние годы способ счета «по линеечке»:

«Чтобы к прибавить 3, нужно взять линеечку, найти на ней цифру 2, отсчитать от нее вправо 3 раза по сантиметру и прочитать на линеечке результат 5»;

«Чтобы от отнять 3, нужно взять линеечку, найти на ней цифру 5, отсчитать от нее влево 3 раза по сантиметру и прочитать на линеечке результат 2».

Этот способ счета с использованием такого примитивного «калькулятора», как линеечка, как будто нарочно придуман для того, чтобы отучить ребенка думать и запоминать. Чем так учить считать, лучше вовсе не учить, а сразу показать, как пользоваться калькулятором. Ведь этот способ, точно так же, как и калькулятор, исключает тренировку памяти и тормозит умственное развитие малыша.

На первом этапе обучения устному счету необходимо научить ребенка считать в пределах десяти. Нужно помочь ему прочно запомнить результаты всех вариантов сложения и вычитания чисел в пределах десяти так, как помним их мы, взрослые.

На втором этапе обучения дошкольники осваивают основные методы сложения и вычитания в уме двузначных чисел. Главным теперь уже является не автоматическое извлечение из памяти готовых решений, а понимание и запоминание способов сложения и вычитания в последующих десятках.

Как на первом, так и на втором этапе обучение устному счету происходит с применением элементов игры и состязательности. С помощью обучающих игр, выстроенных в определенной последовательности, достигается не формальное заучивание, а осознанное запоминание с использованием зрительной и тактильной памяти ребенка с последующим закреплением в памяти каждого усвоенного шага.

Почему я учу именно устному счету? Потому что только устный счет развивает память, интеллект ребенка и то, что мы называем смекалкой. А именно это и потребуется ему в последующей взрослой жизни. А писание «примеров» с длительным обдумыванием и вычислением ответа на пальчиках дошкольнику ничего, кроме вреда, не приносит, т.к. отучает думать быстро. Примеры он будет решать позже, в школе, отрабатывая аккуратность оформления. А сообразительность необходимо развить в раннем возрасте, чему способствует именно устный счет.

Еще до того как начать обучение ребенка сложению и вычитанию, родители должны научить его пересчитывать предметы на картинках и в натуре, считать ступеньки на лестнице, шаги на прогулке. К началу обучения устному счету ребенок должен уметь сосчитать хотя бы пять игрушек, рыбок, птичек, или божьих коровок и при этом освоить понятия «больше» и «меньше». Но все эти разнообразные предметы и существа не следует использовать в дальнейшем для обучения сложению и вычитанию. Обучение устному счету нужно начинать со сложения и вычитания одних и тех же однородных предметов, образующих определенную конфигурацию для каждого их числа. Это позволит задействовать зрительную и тактильную память ребенка при запоминании результатов сложения и вычитания целыми числовыми группами (см. видеофайл 056). В качестве пособия для обучения устному счету я применил набор небольших счетных кубиков в коробочке для счета (подробное описание — далее). А к рыбкам, птичкам, куклам, божьим коровкам и прочим предметам и существам дети вернутся позже, при решении арифметических задач. Но к этому времени сложение и вычитание любых чисел в уме уже не будет представлять для них сложности.

Читать еще:  Как научиться ребенка говорить

Для удобства изложения я разбил первый этап обучения (счет в пределах первого десятка) на 40 уроков, а второй этап обучения (счет в последующих десятках) еще на Пусть вас не пугает большое количество уроков. Разбивка всего курса обучения на уроки приблизительна, с подготовленными детьми я прохожу иногда по урока за одно занятие, и вполне возможно, что вашему малышу так много занятий не потребуется. Кроме того, уроками эти занятия можно назвать лишь условно, т.к. продолжительность каждого составляет лишь Их можно также совмещать с уроками чтения. Заниматься желательно два раза в неделю, а выполнению домашних заданий достаточно уделять по минут в остальные дни. Самый первый урок нужен не каждому ребенку, он разработан лишь для детей, которые еще не знают цифры 1 и, глядя на два предмета, не могут сказать, сколько их, не подсчитав предварительно пальчиком. Их обучение необходимо начинать практически «с чистого листа». Более подготовленные дети могут начинать сразу со второго, а некоторые — с третьего или четвертого урока.

Я провожу занятия одновременно с тремя детьми, не более, чтобы удерживать внимание каждого из них и не давать им скучать. Когда уровень подготовки детей несколько отличается, приходится заниматься с ними поочередно разными задачками, все время переключаясь с одного ребенка на другого. На начальных уроках присутствие родителей желательно для того, чтобы они поняли суть методики и правильно выполняли несложные и коротенькие ежедневные домашние задания со своими детьми. Но разместить родителей надо так, чтобы дети забыли об их присутствии. Родители не должны вмешиваться и одергивать своих детей, даже если те шалят или отвлекаются.

Занятия с детьми устным счетом в небольшой группе можно начинать, приблизительно, с трехлетнего возраста, если они уже умеют подсчитывать пальчиком предметы, хотя бы до пяти. А с собственным ребенком родители вполне могут заниматься начальными уроками по этой методике и с двух лет.

Начальные уроки первого этапа. Обучение счету в пределах пяти

Для проведения начальных уроков потребуются пять карточек с цифрами 1, 2, 3, 4, 5 и пять кубиков с размером ребра примерно установленных в коробочке. В качестве кубиков я использую продающиеся в магазинах развивающих игр «кубики знаний», или «learning bricks», по 36 кубиков в коробке. На весь курс обучения вам потребуются три таких коробки, т.е. 108 кубиков. Для начальных уроков я беру пять кубиков, остальные понадобятся позже. Если вам не удастся подобрать готовые кубики, то их несложно будет изготовить самостоятельно. Для этого нужно лишь распечатать на плотной бумаге, рисунок, а затем вырезать из него заготовки кубиков, склеить их в соответствии с имеющимися указаниями, заполнить любым наполнителем, например, какой-нибудь крупой, и оклеить снаружи скотчем. Необходимо также изготовить коробочку для установки этих пяти кубиков в ряд. Склеить ее так же просто из распечатанного на плотной бумаге и вырезанного рисунка. На дне коробочки начерчены пять клеток по размеру кубиков, кубики должны помещаться в ней свободно.

Вы уже поняли, что обучение счету на начальном этапе будет производиться с помощью пяти кубиков и коробочки с пятью клетками для них. В связи с этим возникает вопрос: а чем же способ обучения с помощью пяти счетных кубиков и коробочки с пятью клетками лучше обучения при помощи пяти пальцев? Главным образом тем, что коробочку учитель время от времени может накрывать ладонью или убирать, благодаря чему расположенные в ней кубики и пустые клетки очень скоро запечатлеваются в памяти ребенка. А пальцы ребенка всегда остаются при нем, он может их увидеть или нащупать, и в запоминании просто не возникает необходимости, стимулирование механизма памяти не происходит.

Не следует также пытаться заменять коробочку с кубиками счетными палочками, другими предметами для счета или кубиками, не составленными в коробочке в ряд. В отличие от кубиков, выстроенных в ряд в коробочке, эти предметы располагаются беспорядочно, не образуют постоянной конфигурации и потому не откладываются в памяти в виде запомнившейся картинки.

Урок № 1

До начала урока выясните, какое количество кубиков ребенок способен определять одновременно, не пересчитывая их по штучке пальчиком. Обычно к трем годам дети могут сказать сразу, не подсчитывая, сколько в коробке кубиков, если их количество не превышает двух или трех, и лишь некоторые из них видят сразу четыре. Но есть дети, которые пока могут назвать лишь один предмет. Для того чтобы сказать, что видят два предмета, они должны посчитать их, показывая пальчиком. Для таких детей и предназначен первый урок. Остальные присоединятся к ним позже. Чтобы определить, какое количество кубиков ребенок видит сразу, ставьте попеременно в коробочку разное количество кубиков и спрашивайте: «Сколько кубиков в коробочке? Не считай, скажи сразу. Молодец! А сейчас? А сейчас? Правильно, молодец!» Дети могут сидеть или стоять у стола. Коробочку с кубиками ставьте на стол рядом с ребенком параллельно кромке стола.

Для выполнения заданий первого урока оставьте детей, которые пока могут определить только один кубик. Играйте с ними поочередно.

  1. Игра «Приставляем цифры к кубикам» с двумя кубиками.
    Положите на стол карточку с цифрой 1 и карточку с цифрой 2. Поставьте на стол коробочку и вложите в нее один кубик. Спросите ребенка, сколько кубиков в коробочке. После того как он ответит «один», покажите ему и назовите цифру 1 и попросите положить ее рядом с коробочкой. Добавьте в коробочку второй кубик и попросите посчитать, сколько теперь в коробочке кубиков. Пусть, если хочет, посчитает кубики пальчиком. После того как ребенок скажет, что в коробочке уже два кубика, покажите ему и назовите цифру 2 и попросите убрать от коробочки цифру 1, а на ее место положить цифру 2. Повторите эту игру несколько раз. Очень скоро ребенок запомнит, как выглядят два кубика, и начнет называть это количество сразу, не подсчитывая. Одновременно он запомнит цифры 1 и 2 и будет придвигать к коробочке цифру, соответствующую количеству кубиков в ней.
  2. Игра «Гномики в домике» с двумя кубиками.
    Скажите ребенку, что сейчас будете играть с ним в игру «Гномики в домике». Коробочка — это понарошку домик, клеточки в ней — комнатки, а кубики — гномики, которые в них живут. Поставьте один кубик на первую клеточку слева от ребенка и скажите: «Один гномик пришел в домик». Потом спросите: «А если к нему придет еще один, сколько гномиков будет в домике?» Если ребенок затрудняется ответить, поставьте второй кубик на стол рядом с домиком. После того как ребенок скажет, что теперь в домике будет два гномика, позвольте ему поставить второго гномика рядом с первым на вторую клеточку. Затем спросите: «А если теперь один гномик уйдет, сколько гномиков останется в домике?» На этот раз ваш вопрос не вызовет затруднения и ребенок ответит: «Один останется».

Потом усложните игру. Скажите: «А теперь сделаем домику крышу». Накройте коробочку ладонью и повторите игру. Каждый раз, когда ребенок скажет, сколько гномиков стало в домике, после того как один пришел, или сколько их в нем осталось, после того как один ушел, убирайте крышу-ладонь и позволяйте ребенку самому добавлять или убирать кубик и убеждаться в правильности своего ответа. Это способствует подключению не только зрительной, но и тактильной памяти ребенка. Убирать всегда нужно последний кубик, т.е. второй слева.

Играйте в игры 1 и 2 поочередно со всеми детьми в группе. Скажите родителям, присутствующим на уроке, что дома они должны играть со своими детьми в эти игры ежедневно один раз в день, если только дети сами не просят больше.

Как быстро считать в уме: приемы устного счета больших чисел

Доверь свою работу кандидату наук!

Образец

Устный счет – занятие, которым в наше время себя утруждает все меньшее количество людей. Гораздо проще достать калькулятор на телефоне и вычислить любой пример.

Но так ли это на самом деле? В этой статье мы представим математические лайфхаки, которые помогут научиться быстро складывать, вычитать, умножать и делить числа в уме. Причем оперируя не единицами и десятками, а минимум двухзначными и трехзначными числами.

Читать еще:  Как научить ребенка говорить букву з

После освоения методов из этой статьи идея лезть в телефон за калькулятором уже не покажется такой хорошей. Ведь можно не тратить время и посчитать все в уме гораздо быстрее, а заодно размять мозги и произвести впечатление на окружающих (противоположного пола).

Итак, добро пожаловать в увлекательный мир вычислений! Мы собрали советы от наших авторов о том, как улучшить устный счет и стать математическим героем и гением. Кстати, если вам интересна математика, вы можете почитать статью «Пределы для чайников» в нашем блоге.

Предупреждаем! Если вы обычный человек, а не вундеркинд, то для развития навыка счета в уме понадобятся тренировки и практика, концентрация внимания и терпение. Сначала все может получаться медленно, но потом дело пойдет на лад, и вы сможете быстро считать в уме любые числа.

Гаусс и устный счет

Карл Фридрих Гаусс

Одним из математиков с феноменальной скоростью устного счета был знаменитый Карл Фридрих Гаусс (1777-1855). Да-да, тот самый Гаусс, который придумал нормальное распределение.

По его собственным словам, он научился считать раньше, чем говорить. Когда Гауссу было 3 года, мальчик взглянул на платежную ведомость своего отца и заявил: «Подсчеты неверны». После того как взрослые все перепроверили, выяснилось, что маленький Гаусс был прав.

В дальнейшем этот математик достиг немалых высот, а его труды до сих пор активно используются в теоретических и прикладных науках. До самой смерти большую часть вычислений Гаусс производил в уме.

Здесь мы не будем заниматься сложными расчетами, а начнем с самого простого.

Сложение чисел в уме

Чтобы научиться складывать в уме большие числа, нужно уметь безошибочно складывать числа до 10. В конечном счете любая сложная задача сводится к выполнению нескольких тривиальных действий.

Чаще всего проблемы и ошибки возникают при сложении чисел с «переходом через 10». При сложении (да и при вычитании) удобно применять технику «опоры на десяток». Что это? Сначала мы мысленно спрашиваем себя, сколько одному из слагаемых не хватает до 10, а потом прибавляем к 10 оставшуюся до второго слагаемого разность.

Например, сложим числа 8 и 6. Чтобы из 8 получить 10, не хватает 2. Затем к 10 останется прибавить 4=6-2. В итоге получаем: 8+6=(8+2)+4=10+4=14

Основная хитрость со сложением больших чисел – разбить их на разрядные части, а потом сложить эти части между собой.

Пусть нам нужно сложить два числа: 356 и 728. Число 356 можно представить как 300+50+6. Аналогично, 728 будет иметь вид 700+20+8. Теперь складываем:

356+728=(300+700)+(50+20)+(8+6)=1000+70+14=1084

Вычитание чисел в уме

Вычитание чисел тоже будет даваться легко. Но в отличие от сложения, где каждое число разбивается на разрядные части, при вычитании «разбить» нужно только то число, которое мы отнимаем.

Например, сколько будет 528-321? Разбиваем число 321 на разрядные части и получаем: 321=300+20+1.

Теперь считаем: 528-300-20-1=228-20-1=208-1=207

Попробуйте визуализировать процессы сложения и вычитания. В школе всех учили считать в столбик, то есть сверху вниз. Один из способов перестроить мышление и ускорить счет – считать не сверху вниз, а слева направо, разбивая числа на разрядные части.

Умножение чисел в уме

Умножение – это многократное повторение числа. Если нужно умножить 8 на 4, это значит, что число 8 нужно повторить 4 раза.

Так как все сложные задачи сводятся к более простым, нужно уметь умножать все однозначные числа. Для этого существует отличный инструмент – таблица умножения. Если вы не знаете эту таблицу на зубок, то мы настоятельно рекомендуем первым делом выучить ее и только потом приниматься за практику устного счета. К тому же учить там, по сути, нечего.

Таблица умножения

Умножение многозначных чисел на однозначные

Сначала потренируйтесь в умножении многозначных чисел на однозначные. Пусть нужно умножить 528 на 6. Разбиваем число 528 на разряды и идем от старшего к младшему. Сначала умножаем, а потом складываем результаты.

528=500+20+8

528*6=500*6+20*6+8*6=3000+120+48=3168

Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы

Умножение двузначных чисел

Здесь тоже нет ничего сложного, только нагрузка на краткосрочную память немного больше.

Перемножим 28 и 32. Для этого сведем всю операцию к умножению на однозначные числа. Представим 32 как 30+2

28*32=28*30+28*2=20*30+8*30+20*2+8*2=600+240+40+16=896

Еще один пример. Умножим 79 на 57. Это значит, что на нужно взять число «79» 57 раз. Разобьем всю операцию на этапы. Сначала умножим 79 на 50, а потом – 79 на 7.

  • 79*50=(70+9)*50=3500+450=3950
  • 79*7=(70+9)*7=490+63=553
  • 3950+553=4503

Умножение на 11

Вот хитрый прием быстрого устного счета, который поможет умножить любое двузначное число на 11 с феноменальной скоростью.

Чтобы умножить двузначное число на 11, две цифры числа складываем друг с другом, и получившуюся сумму вписываем между цифрами исходного числа. Получившееся в итоге трехзначное число — результат умножения исходного числа на 11.

Проверим и умножим 54 на 11.

Возьмите любое двузначное число, умножьте его на 11 и убедитесь сами — эта хитрость работает!

Возведение в квадрат

С помощью другого интересного приема устного счета можно легко и быстро возводить двузначные числа в квадрат. Особенно просто это делать с числами, которые заканчиваются на 5.

Результат начинается с произведения первой цифры числа на следующую за ней по иерархии. То есть, если эту цифру обозначить через n, то следующей за ней по иерархии цифрой будет n+1. Результат заканчивается на квадрат последней цифры, то есть квадрат 5.

Проверим! Возведем в квадрат число 75.

Раньше все считали без калькуляторов

Деление чисел в уме

Осталось разобраться с делением. По сути, это операция, обратная умножению. С делением чисел до 100 никаких проблем вообще возникать не должно – ведь есть таблица умножения, которую вы знаете на зубок.

Деление на однозначное число

При делении многозначных чисел на однозначное необходимо выделить максимально большую часть, которую можно разделить с помощью таблицы умножения.

Например, есть число 6144, которое нужно разделить на 8. Вспоминаем таблицу умножения и понимаем, что на 8 будет делиться число 5600. Представим пример в виде:

6144:8=(5600+544):8=700+544:8

Далее из числа 544 также выделяем максимально большое число, которое делится на 8. Имеем:

544:8=(480+64):8=60+64:8

Осталось разделить 64 на 8 и получить результат, сложив все результаты деления

6144:8=700+60+8=768

Деление на двузначное число

При делении на двузначное число нужно пользоваться правилом последней цифры результата при умножении двух чисел.

При умножении двух многозначных чисел последняя цифра результата умножения всегда совпадает с последней цифрой результата умножения последних цифр этих чисел.

Например, умножим 1325 на 656. По правилу, последняя цифра в получившемся числе будет , так как 5*6=30. Действительно, 1325*656=869200.

Теперь, вооружившись этой ценной информацией, рассмотрим деление на двузначное число.

Сколько будет 4424:56?

Первоначально будем пользоваться методом «подгона» и найдем пределы, в которых лежит результат. Нам нужно найти число, которое при умножении на 56 даст 4424. Интуитивно попробуем число 80.

56*80=4480

Значит, искомое число меньше 80 и явно больше 70. Определим его последнюю цифру. Ее произведение на 6 должно заканчиваться цифрой 4. Согласно таблице умножения, нам подходят результаты 4 и 9. Логично предположить, что результатом деления может быть либо число 74, либо 79. Проверяем:

79*56=4424

Готово, решение найдено! Если бы не подошло число 79, второй вариант обязательно оказался бы верным.

Картина Н.П. Богданова-Бельского «Устный счёт. В народной школе С. А. Рачинского»

Полезные советы

В заключение приведем несколько полезных советов, которые помогут быстро научиться устному счету:

  • Не забывайте тренироваться каждый день;
  • не бросайте тренировки, если результат не приходит так быстро, как хотелось бы;
  • скачайте мобильное приложение для устного счета: так вам не придется самостоятельно придумывать себе примеры;
  • почитайте книги по методикам быстрого устного счета. Существуют разные техники устного счета, и вы сможете овладеть той, которая лучше всего подходит именно вам.

Польза устного счета неоспорима. Тренируйтесь, и с каждым днем вы будете считать все быстрее и быстрее. А если вам понадобится помощь в решении более сложных и многоуровневых задач, обращайтесь к специалистам студенческого сервиса за быстрой и квалифицированной помощью!

Ссылка на основную публикацию
Adblock
detector