221madou.ru

Мама и Я
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Как правильно научиться считать

Устный счет: техника быстрого счета в уме

Зачем считать в уме, если решить любую арифметическую задачу можно на калькуляторе. Современная медицина и психология доказывают, что устный счет — это тренаж для серых клеточек. Выполнять такую гимнастику необходимо для развития памяти и математических способностей.

Известно множество приёмов для упрощения вычислений в уме. Все, кто видел знаменитую картину Богданова-Бельского «Устный счёт», всегда удивляются — как крестьянские дети решают такую непростую задачу, как деление суммы из пяти чисел, которые предварительно ещё надо возвести в квадрат?

Оказывается, эти дети — ученики известного педагога-математика Сергея Александровича Рачицкого (он также изображен на картине). Это не вундеркинды — ученики начальных классов деревенской школы XIX века. Но все они уже знают приёмы упрощения арифметических расчетов и выучили таблицу умножения! Поэтому решить такую задачку этим детишкам вполне под силу!

Секреты устного счёта

Существуют приемы устного счета простые алгоритмы, которые желательно довести до автоматизма. После овладения простыми приёмами можно переходить к освоению более сложных.

Прибавляем числа 7,8,9

Для упрощения вычислений числа 7,8,9 сначала надо округлять до 10, а затем вычитать прибавку. К примеру, чтобы прибавить 9 к двузначному числу, надо сначала прибавить 10, а затем вычесть 1 и т.д.

Быстро складываем двузначные числа

Если последняя цифра двузначного числа больше пяти, округляем его в сторону увеличения. Выполняем сложение, из полученной суммы отнимаем «добавку».

Если последняя цифра двузначного числа меньше пяти, то складываем по разрядам: сначала прибавляем десятки, затем — единицы.

Если слагаемые поменять местами, то сначала можно округлить число 57 до 60, а потом вычесть из общей суммы 3:

Складываем в уме трехзначные числа

Быстрый счет и сложение трехзначных чисел — это возможно? Да. Для этого надо разобрать трехзначные числа на сотни, десятки, единицы и поочередно их приплюсовать.

Особенности вычитания: приведение к круглым числам

Вычитаемые округляем до 10, до 100. Если надо вычесть двузначное число, надо округлить его до 100, вычесть, а затем к остатку прибавить поправку. Это актуально если поправка невелика.

Вычитаем в уме трехзначные числа

Если в свое время был хорошо усвоен состав чисел от 1 до 10, то вычитание можно производить по частям и в указанном порядке: сотни, десятки, единицы.

Умножить и разделить

Моментально умножать и делить в уме? Это возможно, но без знания таблицы умножения не обойтись. Таблица умножения — это золотой ключик к быстрому счету в уме! Она применяется и при умножении, и при делении. Вспомним, что в начальных классах деревенской школы в дореволюционной Смоленской губернии (картина «Устный счет») дети знали продолжение таблицы умножения — с 11 до 19!

Хотя на мой взгляд достаточно знать таблицу от 1 до 10, чтобы мочь перемножать бо´льшие числа. Например:

Умножаем и делим на 4, 6, 8, 9

Овладев таблицей умножения на 2 и на 3 до автоматизма, сделать остальные расчеты будет проще простого.

Для умножения и деления двух- и трехзначных чисел применяем простые приёмы:

умножить на 4 — это дважды умножить на 2;

умножить на 6 — это значит умножить на 2, а потом на 3;

умножить на 8 — это трижды умножить на 2;

умножить на 9 — это дважды умножить на 3.

разделить на 4 — это дважды разделить на 2;

разделить на 6 — это сначала разделить на 2, а потом на 3;

разделить на 8 — это трижды разделить на 2;

разделить на 9 — это дважды разделить на 3.

Как умножать и делить на 5

Число 5 — это половина от 10 (10:2). Поэтому сначала умножаем на 10, затем полученное делим пополам.

Еще проще правило деления на 5. Сначала умножаем на 2, а затем полученное делим на 10.

Умножение на 9

Чтобы умножить число на 9, необязательно его дважды умножать на 3. Достаточно его умножить на 10 и вычесть из полученного умножаемое число. Сравним, что быстрее:

Также давно замечены частные закономерности, которые значительно упрощают умножение двузначных чисел на 11 или на 101. Так, при умножении на 11, двузначное число как бы раздвигается. Составляющие его цифры остаются по краям, а в центре оказывается их сумма. Например: 24*11=264. При умножении на 101, достаточно приписать к двузначному числу такое же. 24*101= 2424. Простота и логичность таких примеров вызывает восхищение. Встречаются такие задачи очень редко — это примеры занимательные, так называемые маленькие хитрости.

Счет на пальцах

Сегодня еще можно встретить много защитников «пальчиковой гимнастики» и методики устного счета на пальцах. Нас убеждают, что учиться складывать и отнимать, загибая и разгибая пальцы — это очень наглядно и удобно. Диапазон таких вычислений очень ограничен. Как только расчеты выходят за рамки одной операции возникают трудности: надо осваивать следующий прием. Да и загибать пальцы в эпоху айфонов как-то несолидно.

Например, в защиту «пальчиковой» методики приводится приём умножения на 9. Хитрость приёма такова:

  • Чтобы умножить любое число в пределах первой десятки на 9, надо развернуть ладони к себе.
  • Отсчитывая слева направо, загнуть палец, соответствующий умножаемому числу. К примеру, чтобы умножить 5 на 9, надо загнуть мизинец на левой руке.
  • Оставшееся количество пальцев слева будет соответствовать десяткам, справа — единицам. В нашем примере — 4 пальца слева и 5 справа. Ответ: 45.

Да, действительно, решение быстрое и наглядное! Но это — из области фокусов. Правило действует только при умножении на 9. А не проще ли, для умножения 5 на 9 выучить таблицу умножения? Этот фокус забудется, а хорошо выученная таблица умножения останется навсегда.

Также существует еще множество подобных приемов с применением пальцев для каких-то единичных математических операций, но это актуально пока вы этим пользуетесь и тут же забывается при прекращении применения. Поэтому лучше выучить стандартные алгоритмы, которые останутся на всю жизнь.

Устный счёт на автомате

Во-первых, необходимо хорошо знать состав числа и таблицу умножения.

Во-вторых, надо запомнить приемы упрощения расчётов. Как выяснилось, таких математических алгоритмов не так уж много.

В-третьих, чтобы приём превратился в удобный навык, надо постоянно проводить краткие «мозговые штурмы» — упражняться в устных вычислениях, используя тот или иной алгоритм.

Тренировки должны быть короткими: решить в уме по 3-4 примера, используя один и тот же приём, затем переходить к следующему. Надо стремиться использовать любую свободную минутку — и полезно, и нескучно. Благодаря простым тренировкам все вычисления со временем будут совершаться молниеносно и без ошибок. Это очень пригодится в жизни и выручит в непростых ситуациях.

Как научить ребенка считать в уме: методика 1 класса и далее. Советы учителя начальных классов

Умение считать в уме — один из основных навыков, который нужно сформировать у ребенка в процессе изучения математики в начальной школе. Ребенок должен научиться быстро и правильно называть результат любого математического действия.

Читать еще:  Как научиться считать ментальной арифметики

Методика обучения счету

У детей преобладает наглядно-образное мышление. Проблема в том, что большинство математических понятий абстрактны и плохо воспринимаются или запоминаются младшими школьниками. Поэтому любые математические операции необходимо основывать на практических действиях с предметами.

Педагогами используется три основных способа, как научить ребенка считать в уме:

  • основываясь на знании состава чисел;
  • заучивая таблицы математических действий наизусть;
  • используя особые приемы выполнения математических действий.

Рассмотрим каждый из них.

Подготовка к обучению устному счету

Подготовка к устному счету должна начинаться с первых шагов в изучении математики. Знакомя ребенка с числами, обязательно нужно приучить его к тому, что каждое число обозначает группу с определенным количеством предметов. Недостаточно посчитать, например, до трех и показать ребенку цифру 3. Обязательно предложите ему показать три пальца, положить перед собой три конфеты или нарисовать три кружочка. Если есть возможность, свяжите число с известными ребенку сказочными героями или другими понятиями:

  • 3 — три поросенка;
  • 4 — черепашки — ниндзя;
  • 5 — пальцев на руке;
  • 6 — героев сказки «Репка»;
  • 7 — гномов и т.д.

У ребенка должны сформироваться четкие образы, привязанные к каждому числу. На этом этапе очень полезно играть с детьми в математическое домино. Постепенно у них в памяти запечатлеются картинки с точечками, которые соотносятся с соответствующими числами.

Также можно практиковать изучение чисел с помощью коробки с кубиками. Такая коробка должна быть разделена на 10 ячеек, которые расположены в два ряда. Знакомясь с каждым числом, ребенок будет заполнять нужное количество ячеек и запоминать соответствующие комбинации. Польза от этих игр с кубиками еще и в том, что ребенок будет подсознательно замечать и запоминать, сколько еще нужно кубиков для дополнения числа до 10. Это очень важное умение для устного счета!

Как вариант, можно использовать для такого упражнения детали конструктора Лего или применить принцип пирамидок из методики Зайцева. Главным результатом всех описанных способов знакомства с числами должна стать их узнаваемость. Нужно добиться, чтобы ребенок при взгляде на комбинацию предметов сразу (без пересчета) мог назвать их количество и соответствующее число.

Устный счет с опорой на состав числа

На основе знания состава числа ребенок может выполнять сложение и вычитание. Например, чтобы сказать, сколько будет «пять плюс два», он должен вспомнить, что 5 и 2 — это 7. А «девять минус три» будет шесть, потому что 9 — это 3 и 6.

Смотрите также: презентации на сложение и вычитание. Во многих из них используется принцип обучения устному счету на основе состава числа (упражнение «Домик» и др.).

Однако, это не так просто, как кажется нам, взрослым. Ребенку нужно запомнить более сорока комбинаций! В школе через каждые два – три урока изучается новое число и дети знакомятся с его составом. При таких условиях прочность знаний недостаточна для свободного оперирования ими. Чтобы помочь ребенку лучше усвоить этот материал, рекомендуется предлагать им такие задания:

  • разложить указанное количество предметов на две тарелки, создавая разные сочетания (вариации подобного задания могут быть различные: развесить игрушки на двух елочках, расставить цветы в две вазочки, расселить гномиков в два домика и т.п.);
  • дополнить число до нужного;
  • закрасить ячейки, на которых записан состав указанного числа;
  • дорисовать доминошки.

Чем чаще ребенок будет выполнять подобные упражнения, тем быстрее и крепче он запомнит состав чисел. В идеале, эти знания должны быть доведены до автоматизма. Они просто необходимы для освоения принципов сложения и вычитания с переходом через десяток.

В дальнейшем, чтобы решать примеры типа 9 + 6, нужно научить ребенка последовательно выполнить несколько логических операций:

  • дополнить первое слагаемое до 10 (на основе знания состава числа 10 это 9 и 1);
  • высчитать, сколько еще нужно добавить (на основе знания состава числа 6 – 1 уже прибавили, осталось 5);
  • подсчитать результат.

Такой же прием (доведение до 10) ребенок будет использовать и при вычитании. Ход его мыслей примерно следующий:

  • чтобы из 14 вычесть 8, сначала нужно отнять 4, чтобы получить 10;
  • вспомнить состав числа 8 — это 4 и 4;
  • из 10 вычесть 4, опираясь на состав числа 10 — это 4 и 6.

Освоив эти способы, ребенок в дальнейшем будет использовать их при решении примеров с числами в пределах 100 и 1000. В основе такого сложения и вычитания лежит умение определять разрядный состав числа и поочередное выполнение действий с каждым разрядом.

Обучение устному счету путем заучивания таблиц

В школе главным способом, как научиться быстро считать в уме, считается заучивание таблиц. Причем подразумевается, что ребенок должен сделать это самостоятельно под контролем родителей. Обычно на уроке учитель только знакомит детей с принципом построения таблицы и выполняет с детьми всего несколько тренировочных упражнений на ее применение.

Есть много способов, заучить таблицы. Практически половину примеров в таблицах на сложение и умножение дети запоминают автоматически после ознакомления с переместительным законом.

Также можно использовать стишки и попевки. Самый известный пример для такого случая — строчки песни «Дважды два четыре, это всем известно в целом мире». Хороший материал можно найти, ознакомившись с методикой Николая Зайцева или программой «Песнезнайка».

Еще одной интересной методикой ознакомления с таблицами является применение приемов эйдетики. На их основе можно придумывать сказки или картинки с использованием образов — чисел.

Чтобы закрепить знание таблиц можно детям предлагать:

  • раскраски;
  • компьютерные математические игры — тренажеры;
  • мультимедийные презентации;
  • тесты.

Без знания соответствующих таблиц у ребенка вряд ли получится научиться делить числа в уме. Постоянные упражнения в применении таблиц значительно улучшают скорость получения результатов при выполнении вычислений в уме.

Использование при устном счете вычислительных приемов

Высшей степенью владения навыками устного счета является умение находить наиболее быстрый и удобный способ подсчета результата. Такие приемы нужно начинать разъяснять детям сразу же после ознакомления их с действиями сложения и вычитания.

Так, например, одним из первых способов, как научить ребенка считать в уме в 1 классе, является методика присчитывания и «перепрыгивания». Дети быстро понимают, что при прибавлении 1 получается последующее число, а при вычитании 1 — предыдущее. Потом нужно предложить познакомиться с лучшей подружкой числа 2 — лягушкой, которая умеет перепрыгивать через число и сразу же называть результат прибавления или вычитания 2.

Аналогично происходит объяснение принципа выполнения этих математических действий с числом 3. В этом поможет пример зайчика, который умеет прыгать подальше — сразу через два числа.

Также детям нужно продемонстрировать приемы:

  • перестановки слагаемых (например, чтобы посчитать 3 + 68, проще поменять числа местами и прибавить);
  • присчитывания частями (28 + 16 = 28 + 2 + 14);
  • приведение к круглому числу (74 – 15 = 74 – 4 – 10 — 1).

Процесс подсчета облегчает умение применять сочетательный и распределительный законы. Например, 11 + 53 + 39 = (11 + 39) + 53. При этом дети должны уметь видеть самый простой способ подсчета.

Читать еще:  Игра обучение чтению ребенка 5 лет

Как научиться быстро считать в уме взрослому

Взрослый человек может использовать для устного счета более сложные алгоритмы. Самым удобным способом быстро считать в уме является округление чисел с последующим дополнением. Например, пример 456 + 297 можно посчитать так:

Аналогично производится и вычитание.

Для выполнения умножения и деления разработаны специальные правила действия с отдельными числами. Например, такие:

  • чтобы умножить число на 5, проще умножить его на 10, а затем разделить пополам;
  • умножение на 6 включает выполнение предыдущих действий и последующее прибавление к результату первого множителя;
  • чтобы умножить двузначное число на 11, нужно записать первую цифру записать на месте сотен, а вторую — на месте единиц. На месте десятков записывается сумма этих двух цифр;
  • разделить на 5 можно умножив делимое на 2, а затем разделить на 10.

Существуют правила для вычислительных действий с десятичными дробями, подсчета процентов, возведения в степень.

Ознакомиться с этими приемами можно в школе или найти материал в интернете, а вот чтобы научиться на их основе быстро считать в уме, необходимо тренироваться и еще раз тренироваться! В процессе тренировок многие результаты запомнятся наизусть, и ребенок будет называть их автоматически. Также он научится оперировать большими числами, раскладывая их на более простые и удобные слагаемые.

Спасибо за Вашу оценку. Если хотите, чтобы Ваше имя
стало известно автору, войдите на сайт как пользователь
и нажмите Спасибо еще раз. Ваше имя появится на этой стрнице.

Есть мнение?
Оставьте комментарий

Понравился материал?
Хотите прочитать позже?
Сохраните на своей стене и
поделитесь с друзьями

Вы можете разместить на своём сайте анонс статьи со ссылкой на её полный текст

Как быстро считать в уме: приемы устного счета больших чисел

Доверь свою работу кандидату наук!

Образец

Устный счет – занятие, которым в наше время себя утруждает все меньшее количество людей. Гораздо проще достать калькулятор на телефоне и вычислить любой пример.

Но так ли это на самом деле? В этой статье мы представим математические лайфхаки, которые помогут научиться быстро складывать, вычитать, умножать и делить числа в уме. Причем оперируя не единицами и десятками, а минимум двухзначными и трехзначными числами.

После освоения методов из этой статьи идея лезть в телефон за калькулятором уже не покажется такой хорошей. Ведь можно не тратить время и посчитать все в уме гораздо быстрее, а заодно размять мозги и произвести впечатление на окружающих (противоположного пола).

Итак, добро пожаловать в увлекательный мир вычислений! Мы собрали советы от наших авторов о том, как улучшить устный счет и стать математическим героем и гением. Кстати, если вам интересна математика, вы можете почитать статью «Пределы для чайников» в нашем блоге.

Предупреждаем! Если вы обычный человек, а не вундеркинд, то для развития навыка счета в уме понадобятся тренировки и практика, концентрация внимания и терпение. Сначала все может получаться медленно, но потом дело пойдет на лад, и вы сможете быстро считать в уме любые числа.

Гаусс и устный счет

Карл Фридрих Гаусс

Одним из математиков с феноменальной скоростью устного счета был знаменитый Карл Фридрих Гаусс (1777-1855). Да-да, тот самый Гаусс, который придумал нормальное распределение.

По его собственным словам, он научился считать раньше, чем говорить. Когда Гауссу было 3 года, мальчик взглянул на платежную ведомость своего отца и заявил: «Подсчеты неверны». После того как взрослые все перепроверили, выяснилось, что маленький Гаусс был прав.

В дальнейшем этот математик достиг немалых высот, а его труды до сих пор активно используются в теоретических и прикладных науках. До самой смерти большую часть вычислений Гаусс производил в уме.

Здесь мы не будем заниматься сложными расчетами, а начнем с самого простого.

Сложение чисел в уме

Чтобы научиться складывать в уме большие числа, нужно уметь безошибочно складывать числа до 10. В конечном счете любая сложная задача сводится к выполнению нескольких тривиальных действий.

Чаще всего проблемы и ошибки возникают при сложении чисел с «переходом через 10». При сложении (да и при вычитании) удобно применять технику «опоры на десяток». Что это? Сначала мы мысленно спрашиваем себя, сколько одному из слагаемых не хватает до 10, а потом прибавляем к 10 оставшуюся до второго слагаемого разность.

Например, сложим числа 8 и 6. Чтобы из 8 получить 10, не хватает 2. Затем к 10 останется прибавить 4=6-2. В итоге получаем: 8+6=(8+2)+4=10+4=14

Основная хитрость со сложением больших чисел – разбить их на разрядные части, а потом сложить эти части между собой.

Пусть нам нужно сложить два числа: 356 и 728. Число 356 можно представить как 300+50+6. Аналогично, 728 будет иметь вид 700+20+8. Теперь складываем:

356+728=(300+700)+(50+20)+(8+6)=1000+70+14=1084

Вычитание чисел в уме

Вычитание чисел тоже будет даваться легко. Но в отличие от сложения, где каждое число разбивается на разрядные части, при вычитании «разбить» нужно только то число, которое мы отнимаем.

Например, сколько будет 528-321? Разбиваем число 321 на разрядные части и получаем: 321=300+20+1.

Теперь считаем: 528-300-20-1=228-20-1=208-1=207

Попробуйте визуализировать процессы сложения и вычитания. В школе всех учили считать в столбик, то есть сверху вниз. Один из способов перестроить мышление и ускорить счет – считать не сверху вниз, а слева направо, разбивая числа на разрядные части.

Умножение чисел в уме

Умножение – это многократное повторение числа. Если нужно умножить 8 на 4, это значит, что число 8 нужно повторить 4 раза.

Так как все сложные задачи сводятся к более простым, нужно уметь умножать все однозначные числа. Для этого существует отличный инструмент – таблица умножения. Если вы не знаете эту таблицу на зубок, то мы настоятельно рекомендуем первым делом выучить ее и только потом приниматься за практику устного счета. К тому же учить там, по сути, нечего.

Таблица умножения

Умножение многозначных чисел на однозначные

Сначала потренируйтесь в умножении многозначных чисел на однозначные. Пусть нужно умножить 528 на 6. Разбиваем число 528 на разряды и идем от старшего к младшему. Сначала умножаем, а потом складываем результаты.

528=500+20+8

528*6=500*6+20*6+8*6=3000+120+48=3168

Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы

Умножение двузначных чисел

Здесь тоже нет ничего сложного, только нагрузка на краткосрочную память немного больше.

Перемножим 28 и 32. Для этого сведем всю операцию к умножению на однозначные числа. Представим 32 как 30+2

28*32=28*30+28*2=20*30+8*30+20*2+8*2=600+240+40+16=896

Еще один пример. Умножим 79 на 57. Это значит, что на нужно взять число «79» 57 раз. Разобьем всю операцию на этапы. Сначала умножим 79 на 50, а потом – 79 на 7.

  • 79*50=(70+9)*50=3500+450=3950
  • 79*7=(70+9)*7=490+63=553
  • 3950+553=4503

Умножение на 11

Вот хитрый прием быстрого устного счета, который поможет умножить любое двузначное число на 11 с феноменальной скоростью.

Читать еще:  Как научить второклассника быстро считать в уме

Чтобы умножить двузначное число на 11, две цифры числа складываем друг с другом, и получившуюся сумму вписываем между цифрами исходного числа. Получившееся в итоге трехзначное число — результат умножения исходного числа на 11.

Проверим и умножим 54 на 11.

Возьмите любое двузначное число, умножьте его на 11 и убедитесь сами — эта хитрость работает!

Возведение в квадрат

С помощью другого интересного приема устного счета можно легко и быстро возводить двузначные числа в квадрат. Особенно просто это делать с числами, которые заканчиваются на 5.

Результат начинается с произведения первой цифры числа на следующую за ней по иерархии. То есть, если эту цифру обозначить через n, то следующей за ней по иерархии цифрой будет n+1. Результат заканчивается на квадрат последней цифры, то есть квадрат 5.

Проверим! Возведем в квадрат число 75.

Раньше все считали без калькуляторов

Деление чисел в уме

Осталось разобраться с делением. По сути, это операция, обратная умножению. С делением чисел до 100 никаких проблем вообще возникать не должно – ведь есть таблица умножения, которую вы знаете на зубок.

Деление на однозначное число

При делении многозначных чисел на однозначное необходимо выделить максимально большую часть, которую можно разделить с помощью таблицы умножения.

Например, есть число 6144, которое нужно разделить на 8. Вспоминаем таблицу умножения и понимаем, что на 8 будет делиться число 5600. Представим пример в виде:

6144:8=(5600+544):8=700+544:8

Далее из числа 544 также выделяем максимально большое число, которое делится на 8. Имеем:

544:8=(480+64):8=60+64:8

Осталось разделить 64 на 8 и получить результат, сложив все результаты деления

6144:8=700+60+8=768

Деление на двузначное число

При делении на двузначное число нужно пользоваться правилом последней цифры результата при умножении двух чисел.

При умножении двух многозначных чисел последняя цифра результата умножения всегда совпадает с последней цифрой результата умножения последних цифр этих чисел.

Например, умножим 1325 на 656. По правилу, последняя цифра в получившемся числе будет , так как 5*6=30. Действительно, 1325*656=869200.

Теперь, вооружившись этой ценной информацией, рассмотрим деление на двузначное число.

Сколько будет 4424:56?

Первоначально будем пользоваться методом «подгона» и найдем пределы, в которых лежит результат. Нам нужно найти число, которое при умножении на 56 даст 4424. Интуитивно попробуем число 80.

56*80=4480

Значит, искомое число меньше 80 и явно больше 70. Определим его последнюю цифру. Ее произведение на 6 должно заканчиваться цифрой 4. Согласно таблице умножения, нам подходят результаты 4 и 9. Логично предположить, что результатом деления может быть либо число 74, либо 79. Проверяем:

79*56=4424

Готово, решение найдено! Если бы не подошло число 79, второй вариант обязательно оказался бы верным.

Картина Н.П. Богданова-Бельского «Устный счёт. В народной школе С. А. Рачинского»

Полезные советы

В заключение приведем несколько полезных советов, которые помогут быстро научиться устному счету:

  • Не забывайте тренироваться каждый день;
  • не бросайте тренировки, если результат не приходит так быстро, как хотелось бы;
  • скачайте мобильное приложение для устного счета: так вам не придется самостоятельно придумывать себе примеры;
  • почитайте книги по методикам быстрого устного счета. Существуют разные техники устного счета, и вы сможете овладеть той, которая лучше всего подходит именно вам.

Польза устного счета неоспорима. Тренируйтесь, и с каждым днем вы будете считать все быстрее и быстрее. А если вам понадобится помощь в решении более сложных и многоуровневых задач, обращайтесь к специалистам студенческого сервиса за быстрой и квалифицированной помощью!

Игры, задания и упражнения, с которыми вы быстро научите ребёнка считать в уме

Когда обучение счёту начинается с классических примеров, ребёнок решает, что считать и заниматься математикой скучно. Попробуйте лучше занимательные игры и задания от ЛогикЛайк. Полезные идеи для детей 3-5 и 6-8 лет.

На LogicLike.com дети развивают логику и способности к математике. Решайте ребусы, закономерности, логические задачи и головоломки. У нас более 3500 занимательных заданий.

Первое знакомство с цифрами и игры с ними

Наверняка вы уже перешагнули эту ступеньку и успели использовать самые разные способы, чтобы запомнить цифры: рисовали, вырезали, лепили и т.д. В возрасте 3-5 лет дети на лету схватывают всё, что интересно, поэтому их несложно вовлекать в обучающие игры.

Давайте рассмотрим пару необычных приёмов для обучения счёту, которые одинаково полезны не только младшим и средним, но и старшим дошкольникам.

«Язык чисел» и математические задачки из воздуха

Мы, взрослые, каждый день думаем числами, но не всегда называем их вслух. А ведь детей может заинтересовать именно «язык чисел»: «Во сколько мы сегодня проснулись? В 7 утра. А какой автобус ждали на остановке? 12-й. Сколько минут ехали? 10».

Постепенно просто называть числа станет скучно. Покажите ребёнку, как интересно считать всё, что его окружает: подъезды в доме, машины на парковке, деревья возле детской площадки, номера домов. Если вы находчивый родитель, то сможете на ходу придумать небольшие математические задачки на сложение и вычитание.

Замечено: с бо́льшим энтузиазмом ребёнок пересчитает то, что ему нравится. Поэтому всем известные задачи с конфетами действуют, как магнит.

Дома ребёнку всегда есть, что посчитать. Можно следить за стрелками часов, превратить в игру измерение веса и роста. Надолго занимает детей отрывной календарь или календарь-игрушка, в котором нужно каждый день переворачивать кубики с цифрами.

А вот этот Lego-календарь и вовсе нужно каждый месяц разбирать и собирать заново.

Для детей старшего дошкольного возраста все перечисленные выше упражнения можно усложнить. Попробуйте вместе составлять текстовые задачи, опираясь на увиденное за день. Пусть ребёнок больше считает в уме, решая прикладные задачи.

А вообще, чтобы придумать интересные задачи самостоятельно или найти качественный материал в интернете, потребуется время. Команда ЛогикЛайк уже провела всю методическую и другую подготовительную работу за вас!

2500+ заданий на развитие логики и математических способностей. Озвучка заданий, ответы и пояснения в вашем онлайн-кабинете.

Простые игры с числами помогут познакомить ребёнка с арифметическими действиями

Кубики, магниты, карточки, счётные палочки — самые что ни на есть стандартные материалы для обучения счёту. Но они быстро наскучат ребёнку. Гораздо интереснее ему будет играть с тем, что он сделает своими руками. Можно пофантазировать вместе с ребёнком и смастерить собственные игры для изучения чисел и отработки простейших математических действий.

Интересное применение найдётся ракушкам, привезенным с моря. Такая игра поможет младшим дошкольникам быстрее научиться складывать и вычитать. Теперь абстрактные арифметические действия можно видеть на наглядном примере.

Лоток из-под яиц и капсулы от киндеров тоже не спешите выбрасывать, их можно превратить в нескучную игру. На фото вариант со сложением, но его можно заменить на вычитание, умножение или деление. Игра хороша тем, что ребёнок может руками «разбирать» и «собирать» новые примеры.

Конструкторы типа Lego тоже подходят для изучения счёта. Подобные игры помогают развивать мелкую моторику, логику и пространственное мышление.

Ссылка на основную публикацию
Adblock
detector