221madou.ru

Мама и Я
26 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Научиться считать обозначает

Как освоить устный счёт школьникам и взрослым

Лайфхакер подобрал простые советы, сервисы и приложения.

Кроме отличных оценок по математике, умение считать в уме даёт массу преимуществ на протяжении всей жизни. Упражняясь в вычислениях без калькулятора, вы:

  • Держите мозг в тонусе. Для эффективной работы интеллект, как и мускулатура, нуждается в постоянных тренировках. Счёт в уме развивает память, логическое мышление и концентрацию, повышает способность к обучению, помогает быстрее ориентироваться в ситуации и принимать правильные решения.
  • Заботитесь о своём психическом здоровье. Исследования показывают Could mental math boost emotional health? , что при устном счёте задействованы участки мозга, ответственные за депрессию и тревожность. Чем активнее работают эти зоны, тем меньше риск неврозов и чёрной тоски.
  • Страхуетесь от проколов в бытовых ситуациях. Способность быстро посчитать сдачу, размер чаевых, количество калорий или проценты по кредиту защищает вас от незапланированных трат, лишнего веса и мошенников.

Освоить приёмы быстрого счёта можно в любом возрасте. Не беда, если сначала вы будете немного «тормозить». Ежедневно практикуйте основные арифметические операции по 10–15 минут и уже через пару месяцев достигнете заметных результатов.

Как научиться складывать в уме

Суммируем однозначные числа

Начните тренировку с элементарного уровня — сложения однозначных чисел с переходом через десяток. Эту технику осваивают в первом классе, но почему-то часто забывают с возрастом.

  • Предположим, вам нужно сложить 7 и 8.
  • Посчитайте, сколько семёрке не хватает до десяти: 10 − 7 = 3.
  • Разложите восьмёрку на сумму трёх и второй части: 8 = 3 + 5.
  • Добавьте вторую часть к десяти: 10 + 5 = 15.

Тот же приём «опоры на десятку» используйте при суммировании однозначных чисел с двузначными, трёхзначными и так далее. Оттачивайте простейшее сложение, пока не научитесь совершать одну операцию за пару секунд.

Суммируем многозначные числа

Основной принцип — разбить слагаемые числа на разряды (тысячи, сотни, десятки, единицы) и суммировать между собой одинаковые, начиная с самых крупных.

Допустим, вы прибавляете 1 574 к 689.

  • 1 574 раскладывается на четыре разряда: 1 000, 500, 70 и 4. 689 — на три: 600, 80 и 9.
  • Теперь суммируем: тысячи с тысячами (1 000 + 0 = 1 000), сотни с сотнями (500 + 600 = 1 100), десятки с десятками (70 + 80 = 150), единицы с единицами (4 + 9 = 13).
  • Группируем числа так, как нам удобно, и складываем то, что получилось: (1 000 + 1 100) + (150 + 13) = 2 100 + 163 = 2 263.

Основная сложность — удержать в голове все промежуточные результаты. Упражняясь в таком счёте, вы заодно тренируете память.

Как научиться вычитать в уме

Вычитаем однозначные числа

Снова возвращаемся в первый класс и оттачиваем навык вычитания однозначного числа с переходом через десяток.

Предположим, вы хотите отнять 8 от 35.

  • Представьте 35 в виде суммы 30 + 5.
  • Из 5 вычесть 8 нельзя, поэтому раскладываем 8 на сумму 5 + 3.
  • Вычтем 5 из 35 и получим 30. Затем отнимем от 30 оставшуюся тройку: 30 − 3 = 27.

Вычитаем многозначные числа

В отличие от сложения, при вычитании многозначных чисел на разряды нужно разбивать только то, которое вы отнимаете.

Например, вас просят отнять 347 от 932.

  • Число 347 состоит из трёх разрядных частей: 300 + 40 + 7.
  • Сначала вычитаем сотни: 932 − 300 = 632.
  • Переходим к десяткам: 632 − 40. Для удобства 40 можно представить в виде суммы 30 + 10. Сперва вычтем 30 и получим 632 − 30 = 602. Теперь отнимем от 602 оставшиеся 10 и получим 592.
  • Осталось разобраться с единицами, используя всё ту же «опору на десятку». Сперва вычитаем из 592 двойку: 592 − 2 = 590. А затем то, что осталось от семёрки: 7 − 2 = 5. Получаем: 590 − 5 = 585.

Как научиться умножать в уме

Лайфхакер уже писал о том, как быстро освоить таблицу умножения.

Добавим, что наибольшие трудности и у детей, и у взрослых вызывает умножение 7 на 8. Есть простое правило, которое поможет вам никогда не ошибаться в этом вопросе. Просто запомните: «пять, шесть, семь, восемь» — 56 = 7 × 8.

А теперь перейдём к более сложным случаям.

Умножаем однозначные числа на многозначные

По сути, здесь всё элементарно. Разбиваем многозначное число на разряды, перемножаем каждый на однозначное число и суммируем результаты.

Разберём на конкретном примере: 759 × 8.

  • Разбиваем 759 на разрядные части: 700, 50 и 9.
  • Умножаем каждый разряд по отдельности: 700 × 8 = 5 600, 50 × 8 = 400, 9 × 8 = 72.
  • Складываем результаты, разбивая их на разряды: 5 600 + 400 + 72 = 5 000 + (600 + 400) + 72 = 5 000 + 1 000 + 72 = 6 000 + 72 = 6 072.

Умножаем двузначные числа

Тут уже рука сама тянется к калькулятору или хотя бы к бумаге и ручке, чтобы воспользоваться старым добрым умножением в столбик. Хотя ничего сверхсложного в этой операции нет. Просто нужно немного потренировать краткосрочную память.

Попробуем умножить 47 на 32, разбив процесс на несколько шагов.

  • 47 × 32 — это то же, что и 47 × (30 + 2) или 47 × 30 + 47 × 2.
  • Сначала умножим 47 на 30. Проще некуда: 47 × 3 = 40 × 3 + 7 × 3 = 120 + 21 = 141. Приписываем справа нолик и получаем: 1 410.
  • Поехали дальше: 47 × 2 = 40 × 2 + 7 × 2 = 80 + 14 = 94.
  • Осталось сложить результаты: 1 410 + 94 = 1 500 + 4 = 1 504.

Этот принцип можно применять и к числам с большим количеством разрядов, но удержать в уме столько операций не каждому под силу.

Упрощаем умножение

Кроме общих правил, есть несколько лайфхаков, облегчающих умножение на определённые однозначные числа.

Умножение на 4

Можно умножить многозначное число на 2, а потом снова на 2.

Пример: 146 × 4 = (146 × 2) × 2 = (200 + 80 + 12) × 2 = 292 × 2 = 400 + 180 + 4 = 584.

Умножение на 5

Умножьте исходное число на 10, а потом разделите на 2.

Пример: 489 × 5 = 4 890 / 2 = 2 445.

Умножение на 9

Умножьте на 10, а затем отнимите от результата исходное число.

Пример: 573 × 9 = 5 730 − 573 = 5 730 − (500 + 70 + 3) = 5 230 − (30 + 40) − 3 = 5 200 − 40 − 3 = 5 160 − 3 = 5 157.

Умножение на 11

Приём сводится к следующему: впереди и сзади подставляем первую и последнюю цифры исходного числа. А между ними последовательно суммируем все цифры.

При умножении на двузначное число всё выглядит крайне просто.

Читать еще:  Как научить считать малыша

Пример: 36 × 11 = 3(3+6)6 = 396.

Если сумма переходит через десяток, в центре остаётся разряд единиц, а к первой цифре добавляем один.

Пример: 37 × 11 = 3(3+7)7 = 3(10)7 = 407.

Чуть сложнее с умножением на более крупные числа.

Пример: 543 × 11 = 5(5+4)(4+3)3 = 5 973.

Как научиться делить в уме

Это операция, обратная умножению, поэтому и успех во многом зависит от знания всё той же школьной таблицы. Остальное — дело практики.

Делим на однозначное число

Для этого разбиваем исходное многозначное число на удобные части, которые точно будут делиться на наше однозначное.

Попробуем разделить 2 436 на 7.

  • Выделим из 2 436 наибольшую часть, которая нацело разделится на 7. В нашем случае это 2 100. Получаем (2 100 + 336) / 7.
  • Продолжаем в том же духе, только теперь с числом 336. Очевидно, что на 7 разделится 280. А в остатке будет 56.
  • Теперь делим каждую часть на 7: (2 100 + 280 + 56) / 7 = 300 + 40 + 8 = 348.

Делим на двузначное число

Это уже высший пилотаж, но мы всё равно попытаемся.
Предположим, вам надо поделить 1 128 на 24.

  • Прикидываем, сколько раз 24 может поместиться в 1 128. Очевидно, что 1 128 примерно в два раза меньше, чем 24 × 100 (2 400). Поэтому для «пристрелки» возьмём множитель 50: 24 × 50 = 1 200.
  • До 1 200 нашему делимому 1 128 не хватает 72. Сколько раз 24 поместится в 72? Правильно, 3. А значит, 1 128 = 24 × 50 − 24 × 3 = 24 × (50 − 3) = 24 × 47. Стало быть, 1128 / 24 = 47.

Мы взяли не самый трудный пример, но пользуясь методом «пристрелки» и дроблением на удобные части, вы научитесь совершать и более сложные операции.

Что поможет освоить устный счёт

Для упражнений придётся ежедневно придумывать новые и новые примеры, только если вы сами этого хотите. В противном случае воспользуйтесь другими доступными способами.

Настольные игры

Играя в те, где необходимо постоянно вычислять в уме, вы не просто учитесь быстро считать. А совмещаете полезное с приятным времяпрепровождением в кругу семьи или друзей.

Карточные забавы вроде «Уно» и всевозможные варианты математического домино позволяют школьникам играючи освоить простое сложение, вычитание, умножение и деление. Более сложные экономические стратегии а-ля «Монополия» развивают финансовое чутьё и оттачивают сложные навыки счёта.

Что купить

  • «Уно»;
  • «7 на 9»;
  • «7 на 9 multi»;
  • «Трафик Джем»;
  • «Хекмек»;
  • «Математическое домино»;
  • «Умножариум»;
  • «Код фараона»;
  • «Суперфермер»;
  • «Монополия».

Мобильные приложения

С ними вы сможете довести устный счёт до автоматизма. Большинство из них предлагают решить примеры на сложение, вычитание, умножение и деление по программе младших классов. Но вы удивитесь, насколько это непросто. Особенно если задачи нужно щёлкать на время, без ручки и бумаги.

Математика: устный счёт, таблица умножения

Охватывает задания на устный счёт, которые соответствуют 1–6 классам школьной программы, включая и задачи на проценты. Позволяет тренировать скорость и качество счёта, а также настраивать сложность. Например, от простой таблицы умножения можно перейти к умножению и делению двузначных и трёхзначных чисел.

Развитие навыка счета в уме у детей

Если ребёнок плохо считает, его нужно правильно научить этому навыку. Несмотря на наличие всевозможных устройств, помогающих людям производить всевозможные математические действия, навык счёта в уме остаётся актуальным. Владение подобными приёмами позволяет организоваться в различных жизненных ситуациях, положительно влияет на имидж, является демонстрацией интеллектуальных способностей.

Навык быстрого счёта в уме можно развить в любом возрасте, но лучше уделить внимание развитию этой способности в раннем детстве. Поэтому родители должны знать, как научить ребёнка считать в уме.

Польза от счёта в уме

Научить ребёнка быстро считать в уме необходимо, потому что от этого занятия идёт одна только польза, а именно:

  • формируется аналитический склад ума, благодаря чему идёт профилактика таких болезней, как слабоумие, маразм, болезнь Альцгеймера;
  • при походе в магазин или покупке билетов Вы можете быть уверены, что Вас не обманут на кассе;
  • человек, который быстро считает в уме, мгновенно принимает верные решения в трудных ситуациях, просчитывает, какие последствия могут быть, ищет лучшие вариации различных задач;
  • у ребёнка развиваются интеллектуальные способности, что положительно влияет на его самооценку и карьерный рост;
  • дети, которые быстро считают в уме, имеют хорошее развитие речи, мысленной реакции, способности принимать творческие решения.

Лучший возраст для начала обучения

Нужно не только знать, как научить ребёнка устному счёту, но и когда лучше начать это делать. Специалисты пришли к общему мнению, что самый благоприятный период для обучения устному счёту – это от 3 до 5 лет. В это время ребёнок легко осваивает лёгкие действия по арифметике (сложение и вычитание). В 5 лет ребёнок решает элементарные примеры и задачки.

Научить считать в уме школьника довольно просто. Главное, чтобы он знал таблицу умножения. Некоторые люди достаточно быстро умеют складывать, вычитать двузначные числа в уме. Другие молниеносно оперируют трёхзначными величинами. Специалисты не называют такую способность феноменом, а полагают, что это под силу любому человеку после соответствующих тренировок.

Следует выделить три важных аспекта:

  • способность концентрировать внимание и удерживать в краткосрочной памяти несколько объектов одновременно;
  • знание специальных алгоритмов, умение подобрать нужный в конкретной ситуации;
  • постоянные тренировки.

При организации упражнений на устные вычисления с дошкольником важно превратить процесс в игру и соблюдать все необходимые условия:

  • установить четкие правила;
  • создать атмосферу состязания – учиться в компании сверстников веселее и азартнее, чем в одиночку;
  • разработать систему поощрений за хорошие результаты.

Первый этап обучения ребёнка устному счету – усвоение расположения цифр. Примеры игровых заданий:

  • знакомство с понятиями «один» и «много» – счётным материалом могут быть кубики, палочки, любые игрушки;
  • соотнесение количества предметов с конкретной цифрой;
  • счёт порядковый и количественный;
  • изучение состава числа.

Перечисленные типы упражнений относятся к тренировочной составляющей навыка. Только при наличии успешного результата можно переходить к алгоритмам и занятиям на концентрацию внимания. Если ребёнок не умеет делать данные упражнения, ему надо повторить всё снова и продуктивно тренироваться.

Эффективные методики обучения счёту в уме

Обучение ребёнка устному счёту – очень важная вещь в процессе развития детей. В этом могут помочь различные программы:

  • Методика Полякова. Сергей Поляков, советский и российский инженер, посвятил более 10 лет тому, чтобы как можно раньше обучить детей техникам чтения и счёта. Его способ состоит в том, что сначала учат ребят считать до десяти и просят их запомнить итоги всех вариаций на плюс и минус. То есть, отрабатываем действия. Затем дошкольники учатся складывать и вычитать в уме двузначные числа. В данном случае им необходимо понять и запомнить способы, как складывать и вычитать в других десятках.
  • Программа Монтессори. Мария Монтессори, первая в Италии женщина-врач и педагог, много лет посвятила системе обучения детей. Данная программа основывается на эмпирических и игровых формах работы с детьми. Материалы, которые используются в обучении, должны быть удобны в применении и иметь яркие картинки, чтобы ребёнку нравилось заниматься. Также детям необходимо на практике применять полученные знания.
  • Ментальная арифметика – логически продуманная, эффективная методика обучения быстрому устному счету является ментальная арифметика. Занятия можно начинать в дошкольном возрасте, когда мозг гибкий, способный к образованию новых нейронных связей.
Читать еще:  Как научить ребенка считать примеры до 10

Для обучения ментальной арифметике используется абакус – древние счёты. Первые тренировки – это умение производить действия, используя костяшки. Последующие – отказ от реального счётного инструмента, замена его ментальной картинкой. Преподаватели учат работать два полушария мозга одновременно.

Мысленная визуализация вычислений – эффективный тренажёр, дающий поразительные результаты. Дети осваивают навык быстрого устного счёта в уме, учатся концентрировать внимание, овладевают специальными алгоритмами вычислений, которые впоследствии рационально используют в нужный момент.

Методики обучения в разном возрасте

Обучить ребёнка устному счёту можно с помощью разных способов. Все они зависят от возраста детей:

  • Дети 2-3 лет. На занятиях в игровой форме расскажите ребёнку, что такое счёт и зачем он нужен. Объясните понятия «много» и «мало».
  • Дети 4-5 лет. Используйте желание дошкольника помочь маме с папой по хозяйству. Собирая тарелки со стола, посчитайте их вместе. Раскладывая игрушки по полкам, также устройте совместный счёт. Со временем у ребёнка сформируются понятия «больше» и «меньше». Познакомьте его с разными геометрическими формами: кругом, квадратом, прямоугольником.
  • Дети 5-6 лет. В этом возрасте ребёнок учится сравнивать предметы, которые отличаются по количеству на один. Основным методом обучения является сравнение. Ребёнок учится устанавливать равенство, убирая или дополняя элементы.
  • Дети 7-8 лет. Школьник осваивает десятичную систему исчисления. Можно использовать методику Зайцева «Тысяча плюс», которая доводит до автомата сложение и вычитание чисел до ста. Или метод Глена Домана, при котором школьники учатся устному счёту по карточкам с точками, развивая при этом зрительную память.

Как научить ребенка считать
статья по математике (подготовительная группа) по теме

Как научить ребенка считать

В основе всех вычислений лежит счет, поэтому у ребенка в первую очередь и следует развивать способность считать. Но «считать» означает, с одной стороны, знать названия чисел, а с другой — понимать суть самого процесса счета. Как всегда, если знание предшествует пониманию, ребенок быстрее пойдет вперед. С полутора лет малыш начинает извлекать для себя пользу из самых первых упражнений, при условии, что вы не будете спешить.

Числа от 1 до 10. Считайте вслух (громко и четко), прежде чем что-либо сделать: потушить свет, включить телевизор, открыть дверь. Старайтесь делать это хотя бы раз в день. Скоро ребенок сможет назвать числа от 1 до 10. Но это вовсе не означает, что он научился считать. Просто, когда он поймет, что такое счет, он сможет сконцентрировать все внимание на сути выполняемых действий, не слишком напрягая память, поскольку цифры он уже запомнил.

Считать что-либо должно стать столь же обычным делом, как и говорить. Ритуалы, связанные с приемом пищи, представляют для этого наибольшие возможности. Считайте тарелки, ножи, кусочки мяса, ложки каши. Видя, как считаете вы, малыш захочет последовать вашему примеру. Как только он проявит такое желание, поощряйте его попытки считать вместе с вами. А чтобы он лучше понял, что счет — не просто забавная абракадабра, поставьте перед ним тарелку и положите рядом с ней три одинаковых предмета. Скажите ребенку, чтобы он по одному клал предметы в тарелку и одновременно считал их. Помогите ему, если это необходимо. «Ты видишь, здесь три кубика, в тарелке три кубика! А теперь посмотрим, сколько их будет на этот раз. » Дайте ему два кубика и начните игру сначала. Когда он хорошо выучит числа один, два и три, добавьте четвертый кубик, и так далее.

Числа больше 10. Когда ребенок (обычно в возрасте трех лет) научится пересчитывать предметы, он будет делать все большие и большие успехи. И потому необходимо, чтобы вы все время опережали его. Как только он сможет сосчитать до 10, познакомьте его со следующим десятком, описанным выше способом. Можно также пропеть числа на знакомый малышу мотив (например, песни «Как мне маме объяснить. «). Когда он сможет сосчитать некоторое количество предметов, купите, например, фасоль, и пусть он считает фасолины, перекладывая их из одного сосуда в другой. Дайте ему кружку, в которую вы будете прибавлять несколько фасолин (или шариков) каждый день. Когда их число дойдет до 50, возьмите другую кружку и скажите: «В твоей кружке 50 фасолин. А следующие фасолины ты будешь класть в другую кружку!» Это позволит вам как-нибудь «убедиться», что в первой кружке по-прежнему 50 фасолин. В следующий же раз вы можете сосредоточиться на идущих далее числах, имея возможность не начинать весь счет с нуля.

Ноль. Объясните ребенку, что такое ноль. Это очень важно, так как при переходе к символам ноль вам понадобится, чтобы записывать числа после 9. Чтобы дать почувствовать малышу, что число, ничего не обозначающее, — совершенно особое число, задавайте ему шуточные вопросы: «Сколько коров у тебя в кармане? Сколько крокодилов у нас в ванной?» Вы можете быть уверены, что он никогда не забудет, что такое ноль!

Считать, дотрагиваясь. Когда ребенок как следует научится считать предметы, перекладывая их из одного сосуда в другой, покажите ему вашу руку с растопыренными пальцами и попросите пересчитать пальцы, дотрагиваясь до них. Вы можете помочь малышу, двигая пальцем, который он должен потрогать.

Читать еще:  Зайцев обучение чтению

Потом предложите ему сосчитать расположенные перед ним предметы, дотрагиваясь до каждого из них. Необходимо, чтобы он понял, что должен по одному разу дотронуться до каждого предмета. Это нелегко, потому-то и желательно начинать упражнения в пересчете, перекладывая предметы из одного сосуда в другой. Наконец, научите его считать предметы, изображенные на картинках в книге.

Формирование понятия числа в процессе обучения счету в разных возрастных группах

Формирование понятия числа в процессе обучения счету в разных возрастных группах

Натуральные числа – это числа, возникающие в процессе счета отдельных предметов (1,2,3 … и т. д.) или измерения.

Основным понятием элементарной математики в детском саду является понятие числа. Работа по формированию у детей этого понятия ведется на протяжении трех лет (в средней, старшей и подготовительной группах) и далее продолжается в начальных классах школы.

Ознакомление детей с числами подготавливается практическими упражнениями, объединяющими две группы предметов, выделяющими отдельные элементы из группы, устанавливающими соответствия между элементами двух совокупностей. От практических действий с предметами дети постепенно переходят к их счету, знакомятся с первыми десятью числами натурального ряда (их названиями, последовательностью), выясняют с помощью этих чисел, как образуется каждое число, учатся сравнивать их.

Научиться считать – значит уметь определять общее количество чего-то. При осуществлении счетной операции дети усваивают основные правила счета: числительные называются по порядку; каждое названное числительное соотносится с одним объектом или одной группой, последнее числительное соотносится с одним предметом, но является показателем общего количества объектов счета. указывала: «Цель счетной деятельности – найти итоговое число, а средством достижения этой цели является название числительных по порядку и соотнесение их к каждому элементу множества».

При обучении детей педагогу важно самому четко выполнять счетные действия: показывать на каждый предмет при названии чисел и совершать круговой жест при назывании итогового числа («Всего четыре вазы», — говорит и показывает воспитатель).

Обучение дошкольников счету будет более успешным, если воспитатель будет использовать наглядные методы. Важно, чтобы ребенок понял, как получается каждое новое число. Формирование понимания образования числа, отношений между числами осуществляется в процессе счета на основе сравнения двух групп предметов, когда предметы каждой совокупности располагаются в ряд, друг под другом. Такое расположение помогает детям понять, почему каждая совокупность именуется другим числом. Педагог обращает внимание детей на равенство (неравенство) количества предметов в сравниваемых группах, указывает, что, прежде чем дать ответ на вопрос «Сколько?», надо посчитать. У детей пятого жизни формируется понимание связей между числами: каждое следующее число больше предыдущего и соответственно меньше последующего.

При сравнении количества игрушек отмечают, каких игрушек больше, каких меньше, сколько игрушек в одной группе, сколько в другой. Затем сравнивают числа: матрешек больше, чем пирамидок, матрешек 5, пирамидок 4, 5 больше 4. Устанавливаются и обратные отношения: пирамидок меньше, чем матрешек, 4 пирамидки, а матрешек 5, 4 меньше 5.

Счет предметов, составляющих две совокупности, в одной из которых содержится больше элементов, чем в другой, служит основой для сравнения чисел. Постепенно упражняясь в сравнении совокупностей и на этой основе в сравнении чисел, дошкольники усваивают, что для получения следующего числа достаточно прибавить единицу к данному числу, а чтобы получить предыдущее, надо уменьшить (вычесть) число на единицу. Так, при сравнении чисел можно спросить: «Какое число больше 7 на 1 (меньше на 1)? На сколько 8 больше 7? На сколько 7 меньше 8?» Потом показывает карточку и предлагает детям посчитать, сколько на ней бабочек, а затем назвать число больше на 1. Потом предлагает назвать число, которое получится, если 8 увеличить на 1, если к 9 уменьшить на 1, назвать число, которое при счете идет за числом 9. Дети называют числа 8 и 9. Педагог спрашивает: «Какое из больше (меньше), на сколько?»

Подобные вопросы – задания развивают внимание, способствуют усвоению закономерностей образования чисел натурального ряда.

В старшей группе у дошкольников развивается понимание того, что каждое число включает определенное количество единиц. Состав числа из единиц изучается на конкретном материале. Сначала проводится анализ группы предметов по их качеству, признакам, а потом называется число и единицы числа. Например, перед детьми ставим 4 разноцветных куба. Им необходимо ответить на вопрос: «Сколько всего кубов? Какого они цвета?» или: «Сколько красных, синих, зеленых и желтых кубов?» (1 красный, 1 синий, 1 зеленый, 1 желтый). «Сколько всего кубов?» (4.) Значит 4 – это 1,1, 1, и 1.

Обучая детей счету, педагог сначала использует конкретные предметы и их изображения и только после этого знакомит малышей с геометрическими фигурами, счетными палочками и, наконец, цифрами.

В подготовительной к школе группе у детей развивается понимание того, что числа образуются не только с помощью прибавления или вычитания единицы. Число можно получить из двух меньших чисел, его можно разложить на два меньших числа. На конкретном материале им показывают варианты состава числа:

3 – это 2 и 1; 1 и 2.

4 – это 3 и 1; 2 и 2; 1 и 3.

5 – это 4 и 1; 3 и 2; 2 и 3; 1 и 4. и т. д.

Закрепляя знания цифр и умение называть равенство разных групп предметов, можно давать такие задания: показать цифру, а дети должны отсчитать и положить столько же предметов.

Дошкольников подводят к пониманию не только количественного, но и порядкового значения числа. Дети старшего возраста, овладевая операцией счета, могут выполнять ее в различных условиях: считать предметы не только в ряд и не только слева направо, но и справа налево, сверху вниз, снизу вверх. Они могут считать звуки, движения, предметы, изображенные на рисунке и т. д.

Необходимо правильно понимать вопросы «Какой?» и «Который?». Целесообразно сравнивать предметы по величине, цвету и называть их порядковый номер. Например, «Какого цвета третья полоска?», «Которая зеленая полоска?».

Дети знакомятся с цифрами. Они узнают, что каждое число может быть не только названо, но и записано. Цифра – это знак, на который можно посмотреть и определить сколько каких предметов. Знания цифр закрепляется при знакомстве детей с деньгами. Один из способов закрепления знаний о составе числа является оперирование монетами.

Ссылка на основную публикацию
Adblock
detector